

Brake wear particle measurement setup for quantitative emission analysis

Marcel Mathissen F. Farwick zum Hagen, R. Vogt T. Grabiec, T. Hennicke, M. Rettig, J. Grochowicz

Go Further

LITERATURE REVIEW

P.G. Sanders et al. 2002

• A. Hagino et al., 2015

A. Haselden et al., 2005

• G. Perricone et al., 2015

BRAKE WEAR MEASUREMENT SETUP

HORIZ ON 2020

Requirements

- Reproducible results.....
- Quantitative analysis.....
- Maximal aerosol yield
 - Low particle loss.....
 - High sensitivity.....
- Measure brake aerosol only
 - low background contribution.. \rightarrow filtered air
- Representative & unbiased setup. \rightarrow isokinetic sampling

Technical needs

- ightarrow controlled airflow at sampling point
- ightarrow no aerosol bypass & low dilution
- ightarrow sampling in full aerosol stream

GA no. 636592 www.lowbrasys.eu

- Circular chamber design
 - Chamber volume: ~0.2 m³
 - Volume exchange time at 250 m³/h: 3 s (v_{air,tube} = 4 m/s)
 - Avoiding dead air spaces
- Completely sealed chamber
- Fully conductive chamber surface connected to ground potential
 - No electrostatic particle losses
- Vertical sampling with isokinetic inlets

BRAKE WEAR MEASUREMENT SETUP

BRAKE WEAR MEASUREMENT SETUP

 250 m³/h with d=0.15 m appears to be "sweet spot" for our setup with regards to sampling losses, signal strength, isokinetic sampling correction.

CFD-TURBULENT MIXING

- Inlet and outlet positions are optimized to achieve turbulent mixing
- CFD confirms desired turbulent chamber flow

FLOW FIELD MEASUREMENTS I

 Air velocity profile is in good agreement with CFD simulations

- Probe customized according to air velocity profile → isokinetic sampling
- Is the aerosol intermixing sufficient?
- Are there different concentrations due to different sampling points within the tube?

5

2

FLOW FIELD MEASUREMENTS II

Potential pitfalls:

- Is the aerosol intermixing sufficient?
- Are there different concentrations due to different sampling points within the tube?

- Pre-tests series starting with straight tube only. Afterwards repetition with "bend-setup" using A1 & A4 test dust.
- Finally, testing with measurement chamber and "bendsetup".
- Conclusions:
 - No influence of inhomogeneous flow field on particle concentration found. Aerosol is well-mixed, i.e. no measurable differences in particle concentrations found.

CHAMBER EXCHANGE RATE

- Sampling geometry according to $v_{air,tube} \rightarrow$ isokinetic sampling
- Simultaneous measurement with multiple devices is possible
- Almost all devices are placed directly underneath sampling point
 → Gravitational losses and particle deposition in bend are avoided

Initial experiments:

- A1 dust released in chamber
- On/off signals

Signal decay time ~ 2 s → Agreement with exchange time of chamber volume (3 s)

• Are there particle contributions from the **drive shaft sealing/sliding thermocouple**?

- Enclosed chamber, almost zero background contribution
- Disc rotation stepwise from 0 to 100 km/h (brake caliper dismounted)

A small increase above background concentration levels appears at 100 km/h with sliding thermocouple installed

- Systematic development and characterization of a measurement system for brake wear particle emissions
- Key advantages of setup design:
 - High transport efficiencies over large particle size range
 - Controlled dust dilution \rightarrow quantitative measurements
 - Parallel sampling \rightarrow multiple analysis is possible
- Initial results:
 - Very low background signal due to HEPA filtered air
 - High signal to noise ratio \rightarrow high sensitivity
 - Fast response time \rightarrow precise signal mapping

