"Analysis of influence parameters during sampling of brake dust particle with a constant volume sampling system"

Department of Automotive Engineering

Prof. Klaus Augsburg, M.Sc. Toni Feißel, M.Eng. David Hesse

Department of Automotive Engineering

Analysis of Influence Parameters for CVS Measurement 1. Introduction: CFD Modelling

- → flow set up validated by PIV (Particle Image Velocimetry)
- → visualization of brake dust particle behavior depending of pariticle properties (i.e. aerodynamic diameter)
- → analysis of influence parameters for sampling of brake dust particle with a constant volume sampling system (CVS).

Analysis of Influence Parameters for CVS Measurement 1. Introduction: Measurement Strategy

Inertia Brake Dyno

- reproducible load parameters and environmental conditions
- stationary emission measuring systems

Chassis Dynamometer

- reproducible load parameters and environmental conditions
- maneuver based RDE-testing
- portable (PEMS) and stationary emission measuring systems

Road Tests / RDE

- dynamic driving conditions
- investigation the influence of the driver
- PEMS measuring systems
- investigation the influence of different road conditions
- realistic emissions behaviour
- complexity / poor reproducibility
- investigation costs

Analysis of Influence Parameters for CVS Measurement 1. Introduction: Measurement Strategy

Process-Related Parameters (CVS)

- 1. enclosure (chamber) placed around the brake system
- 2. evacuation of the particle-volume by a constant and controlled air flow
- 3. sampling (partial volume) in the transport line

Analysis of Influence Parameters for CVS Measurement 1. Introduction: Measurement Requirements

Aim: Dyno-Measurement of PN and PM

Requirements	Physical Processes
high inlet efficiency	 high Transport efficiency: Low particle deposition on CVS-chamber walls high sampling efficiency: Isokinetic sampling
high reproducibility	well premixed aerosolconstant aerosol flow
 minimized aerosol modification (agglomeration) 	 reduced particle-particle interaction (particle residence time)
multi-device-measurement	flow splittermultiple probes
minimized background concentration	filtered inlet airfully sealed chamber

Analysis of Influence Parameters for CVS Measurement 1. Introduction: Measurement Requirements

Aim: Dyno-Measurement of PN and PM

Approach

- analysis of particle behaviour within an existing CVS for brake dust emissions
- insight on how influence factors effect the measurement result

Solution

- development of a newly designed CVS based on CFD-Simulation results
- additional: Fully sealed chamber design / HEPAfiltered inlet air

CVS - 1st Generation

CVS - 2nd Generation

Analysis of Influence Parameters for CVS Measurement 2. Analysis: Roadmap – Improved CVS / CFD Model

Analysis of Influence Parameters for CVS Measurement 2. Analysis: CVS 1st Generation

Investigation of particle **transport** efficiency η_m and particle uniformity U_n across the measurement tunnel diameter, where the particles sample is abstracted by the probe. (particle size range 0,1-4μm)

Results:

- Highly turbulent flow inside the enclosure leads to inconsistent particle-air mixing as well as inconsistent particle deposition, which results in a nosy measurement signal (observed during measurement).
- High particle residence time inside the chamber up to 8s (diffusion losses / agglomeration).

→ Development of improved CVS 2nd generation with streamline flow design

Seite 8

Analysis of Influence Parameters for CVS Measurement 2. Analysis: Development CVS 2nd Generation

Measurement Tunnel:

 well premixed particle flow: Strongly improved uniformity

improvement of transport efficiency

- linearized air flow
- Integration of a particle filter (H13)

Analysis of Influence Parameters for CVS Measurement 2. Analysis: Development CVS 2nd Generation

CVS - 1st Generation

- complex assessment of particle behaviour
- slow evacuation / high particle residence times

CVS - 2nd Generation

- Foreseeable particle trajectories
- fast and direct evacuation
- → TU Ilmenau focus

Analysis of Influence Parameters for CVS Measurement 2. Analysis: Volume Flow and Suction Direction

Volume Flow:

Suction Direction:

CFD based results indicate a significant dependence of transport losses and particle uniformity form:

- volume flow
- suction direction
- disc rotation speed
- → Challenge: Indirect proportional correlation between particle mixing and transport efficiency.
- → Compromise needed: Evacuation in reverse particle stream initial direction (depending on disk rotation and caliper layout) with maximum air flow, to ensure maximum particle mixture and transport efficiency at the same time.

Analysis of Influence Parameters for CVS Measurement 2. Analysis: Disc Rotation Speed

Disc Rotation Speed:

- Disc rotation velocity is the only influence factor that varies during measurement.
- Centrifugal forces affect the initial particle velocity, which leads to additional particle mixing but also has a negative effect on particle deposition as particles are forced against the chamber walls.
- The CFD models shows a optimal particle uniformity across the measurement tunnel diameter for 60-150km/h while transport efficiency decreases linearly with increasing rotational speed.

→ CFD Simulation offers the possibility to assess the amount of particles lost inside the CVS depending on the test cycle.

Analysis of Influence Parameters for CVS Measurement 2. Analysis: Probe and Flow Splitter

Seite 13

- *Isokinetic sampling: Probe inlet diameter* has to be adjusted with regard to the measurement device sample flow.
- For PM_{2.5} no considerable measurement deviation (<5%) due to partial volume sampling was found (validated by experiment). For bigger particle sizes deviation increases significantly due to inertia (CFD).
- For coarse particles (>2,5µm) parallel measurement by means of a flow splitter should be avoid, as coarse particles tend to keep their initial path, which leads to over / under representation.
- \rightarrow CVS 2nd Generation is PM_{2.5} ready
- \rightarrow Better solution for PM₁₀: Multi-Probe?

Analysis of Influence Parameters for CVS Measurement 2. Analysis: Comparison CFD / Empirical Model

Simple Bend Tube

Seite 14

- Empirical model (validated by experiment) shows transport efficiency optimum between 0,01-1µm for CVS.
- Below 0,01µm diffusion losses and above 1µm inertia losses are observed. Due to inertia, sufficient measurement of particles >5µm is not possible.
- Currently there is no CFD particle deposition model available to match the empirical results.
- \rightarrow CVS 2nd generation is PM2,5 ready / New Approach for PM₁₀ needed
- → Advantage CFD: Contemplation of brake system specific effects / assessment of PN and PM measurement
- → Current work: Development of an CFDdeposition model for brake dust emissions

Analysis of Influence Parameters for CVS Measurement 3. Summary and Conclusions

Aim: Dyno-Measurement of PN and PM

Sammary	Conclusions / Enritations
 investigation of CVS 1st generation regarding particle-air interaction 	 highly turbulent flow: Inconsistent uniformity and transport losses, high particle residence time
 development of an advanced CVS 2nd generation 	 linearized particle behaviour, enhanced uniformity and transport efficiency
investigation of Influence factors	 CVS 2nd Generation is PM_{2,5} ready indirect proportional correlation of uniformity and transport efficiency

- comparisons with empirical models
- development of an CFD-particle deposition model fitted for brake dust emissions

CFD provides possibility to assess particle losses

further validation necessary

depending on the test cycle

Conclusions / Limitations

Analysis of Influence Parameters for CVS Measurement 3. Summary and Conclusions

Analysis of Influence Parameters for CVS Measurement 4. Outlook: Open Questions

Aim: Dyno-Measurement of PN and PM

	ш	ŧ١			1
0		LI	w	u	ĸ

Open Questions

Influences of particle deposition	 material properties: particle chemical composition (Hamakar-constant, density etc.)? material and surface condition of the CVS? particle shapes: depending on particle size? electrostatic effects? thermophoresis: heated particles / cold chamber walls?
• PM ₁₀ -Measurment	 transport efficiency: Sufficient measurement possible? (inertia) Uniformity: Multi-Probe?
further influences	 background concentration: cleaning of chamber walls?

Analysis of Influence Parameters for CVS Measurement 4. Outlook: RDE Testing

Aim: Real Drive Emission Measurement of PN and PM

Outlook

RDE Testing

- Use lessons learned under reproducible conditions at the brake inertia dynamometer to develop a RDE system.
- → Challenge: Fully enclosed system in proximity to rotating components (brake disk / rim), exposed to heated brake disk as well as environmental influences (moisture).

CFD:

- Max. transport efficiency
- Max. uniformity
- Min. pressure difference

Analysis of Influence Parameters for CVS Measurement 4. Outlook: RDE Testing

Aim: Real Drive Emission Measurement of PN and PM

Outlook

RDE Testing

Measurement set up

- Fully enclosed brake system:
 Complete collection of brake dust /
 exclusion of environmental
 influences.
- A H13 filter is used to eliminate external influences / battery powered blower is supplying volume flow.
- Particle loaded air is passed into the measurement tunnel / probe.

→ Current work: Further CFD investigation for improved transport efficiency

Thank You for Your Attention!

