"Analysis of influence parameters during sampling of brake dust particle with a constant volume sampling system" #### **Department of Automotive Engineering** Prof. Klaus Augsburg, M.Sc. Toni Feißel, M.Eng. David Hesse Department of Automotive Engineering ## Analysis of Influence Parameters for CVS Measurement 1. Introduction: CFD Modelling - → flow set up validated by PIV (Particle Image Velocimetry) - → visualization of brake dust particle behavior depending of pariticle properties (i.e. aerodynamic diameter) - → analysis of influence parameters for sampling of brake dust particle with a constant volume sampling system (CVS). ### Analysis of Influence Parameters for CVS Measurement 1. Introduction: Measurement Strategy #### **Inertia Brake Dyno** - reproducible load parameters and environmental conditions - stationary emission measuring systems #### **Chassis Dynamometer** - reproducible load parameters and environmental conditions - maneuver based RDE-testing - portable (PEMS) and stationary emission measuring systems #### **Road Tests / RDE** - dynamic driving conditions - investigation the influence of the driver - PEMS measuring systems - investigation the influence of different road conditions - realistic emissions behaviour - complexity / poor reproducibility - investigation costs ## Analysis of Influence Parameters for CVS Measurement 1. Introduction: Measurement Strategy #### **Process-Related Parameters (CVS)** - 1. enclosure (chamber) placed around the brake system - 2. evacuation of the particle-volume by a constant and controlled air flow - 3. sampling (partial volume) in the transport line # Analysis of Influence Parameters for CVS Measurement 1. Introduction: Measurement Requirements Aim: Dyno-Measurement of PN and PM | Requirements | Physical Processes | |--|--| | high inlet efficiency | high Transport efficiency: Low particle deposition on CVS-chamber walls high sampling efficiency: Isokinetic sampling | | high reproducibility | well premixed aerosolconstant aerosol flow | | minimized aerosol modification
(agglomeration) | reduced particle-particle interaction
(particle residence time) | | multi-device-measurement | flow splittermultiple probes | | minimized background
concentration | filtered inlet airfully sealed chamber | ## Analysis of Influence Parameters for CVS Measurement 1. Introduction: Measurement Requirements Aim: Dyno-Measurement of PN and PM #### **Approach** - analysis of particle behaviour within an existing CVS for brake dust emissions - insight on how influence factors effect the measurement result #### **Solution** - development of a newly designed CVS based on CFD-Simulation results - additional: Fully sealed chamber design / HEPAfiltered inlet air #### **CVS - 1st Generation** #### CVS - 2nd Generation ### Analysis of Influence Parameters for CVS Measurement 2. Analysis: Roadmap – Improved CVS / CFD Model ### Analysis of Influence Parameters for CVS Measurement 2. Analysis: CVS 1st Generation Investigation of particle **transport** efficiency η_m and particle uniformity U_n across the measurement tunnel diameter, where the particles sample is abstracted by the probe. (particle size range 0,1-4μm) #### Results: - Highly turbulent flow inside the enclosure leads to inconsistent particle-air mixing as well as inconsistent particle deposition, which results in a nosy measurement signal (observed during measurement). - High particle residence time inside the chamber up to 8s (diffusion losses / agglomeration). → Development of improved CVS 2nd generation with streamline flow design Seite 8 ## Analysis of Influence Parameters for CVS Measurement 2. Analysis: Development CVS 2nd Generation #### **Measurement Tunnel:** well premixed particle flow: Strongly improved uniformity improvement of transport efficiency - linearized air flow - Integration of a particle filter (H13) ### Analysis of Influence Parameters for CVS Measurement 2. Analysis: Development CVS 2nd Generation #### **CVS - 1st Generation** - complex assessment of particle behaviour - slow evacuation / high particle residence times #### CVS - 2nd Generation - Foreseeable particle trajectories - fast and direct evacuation - → TU Ilmenau focus ### Analysis of Influence Parameters for CVS Measurement 2. Analysis: Volume Flow and Suction Direction #### **Volume Flow:** #### **Suction Direction:** CFD based results indicate a significant dependence of transport losses and particle uniformity form: - volume flow - suction direction - disc rotation speed - → Challenge: Indirect proportional correlation between particle mixing and transport efficiency. - → Compromise needed: Evacuation in reverse particle stream initial direction (depending on disk rotation and caliper layout) with maximum air flow, to ensure maximum particle mixture and transport efficiency at the same time. ## Analysis of Influence Parameters for CVS Measurement 2. Analysis: Disc Rotation Speed #### **Disc Rotation Speed:** - Disc rotation velocity is the only influence factor that varies during measurement. - Centrifugal forces affect the initial particle velocity, which leads to additional particle mixing but also has a negative effect on particle deposition as particles are forced against the chamber walls. - The CFD models shows a optimal particle uniformity across the measurement tunnel diameter for 60-150km/h while transport efficiency decreases linearly with increasing rotational speed. → CFD Simulation offers the possibility to assess the amount of particles lost inside the CVS depending on the test cycle. ### Analysis of Influence Parameters for CVS Measurement 2. Analysis: Probe and Flow Splitter Seite 13 - *Isokinetic sampling: Probe inlet diameter* has to be adjusted with regard to the measurement device sample flow. - For PM_{2.5} no considerable measurement deviation (<5%) due to partial volume sampling was found (validated by experiment). For bigger particle sizes deviation increases significantly due to inertia (CFD). - For coarse particles (>2,5µm) parallel measurement by means of a flow splitter should be avoid, as coarse particles tend to keep their initial path, which leads to over / under representation. - \rightarrow CVS 2nd Generation is PM_{2.5} ready - \rightarrow Better solution for PM₁₀: Multi-Probe? ### Analysis of Influence Parameters for CVS Measurement 2. Analysis: Comparison CFD / Empirical Model #### **Simple Bend Tube** Seite 14 - Empirical model (validated by experiment) shows transport efficiency optimum between 0,01-1µm for CVS. - Below 0,01µm diffusion losses and above 1µm inertia losses are observed. Due to inertia, sufficient measurement of particles >5µm is not possible. - Currently there is no CFD particle deposition model available to match the empirical results. - \rightarrow CVS 2nd generation is PM2,5 ready / New Approach for PM₁₀ needed - → Advantage CFD: Contemplation of brake system specific effects / assessment of PN and PM measurement - → Current work: Development of an CFDdeposition model for brake dust emissions ## Analysis of Influence Parameters for CVS Measurement 3. Summary and Conclusions Aim: Dyno-Measurement of PN and PM | Sammary | Conclusions / Enritations | |---|---| | investigation of CVS 1st generation regarding particle-air interaction | highly turbulent flow: Inconsistent uniformity and
transport losses, high particle residence time | | development of an advanced CVS
2nd generation | linearized particle behaviour, enhanced
uniformity and transport efficiency | | investigation of Influence factors | CVS 2nd Generation is PM_{2,5} ready indirect proportional correlation of uniformity and transport efficiency | - comparisons with empirical models - development of an CFD-particle deposition model fitted for brake dust emissions CFD provides possibility to assess particle losses further validation necessary depending on the test cycle Conclusions / Limitations ### Analysis of Influence Parameters for CVS Measurement 3. Summary and Conclusions # Analysis of Influence Parameters for CVS Measurement 4. Outlook: Open Questions Aim: Dyno-Measurement of PN and PM | | ш | ŧ١ | | | 1 | |---|---|----|---|---|---| | 0 | | LI | w | u | ĸ | #### **Open Questions** | Influences of particle deposition | material properties: particle chemical composition (Hamakar-constant, density etc.)? material and surface condition of the CVS? particle shapes: depending on particle size? electrostatic effects? thermophoresis: heated particles / cold chamber walls? | |-----------------------------------|---| | • PM ₁₀ -Measurment | transport efficiency: Sufficient measurement possible? (inertia) Uniformity: Multi-Probe? | | further influences | background concentration: cleaning of chamber
walls? | # Analysis of Influence Parameters for CVS Measurement 4. Outlook: RDE Testing Aim: Real Drive Emission Measurement of PN and PM #### Outlook #### **RDE Testing** - Use lessons learned under reproducible conditions at the brake inertia dynamometer to develop a RDE system. - → Challenge: Fully enclosed system in proximity to rotating components (brake disk / rim), exposed to heated brake disk as well as environmental influences (moisture). #### CFD: - Max. transport efficiency - Max. uniformity - Min. pressure difference # Analysis of Influence Parameters for CVS Measurement 4. Outlook: RDE Testing Aim: Real Drive Emission Measurement of PN and PM #### Outlook #### **RDE Testing** #### Measurement set up - Fully enclosed brake system: Complete collection of brake dust / exclusion of environmental influences. - A H13 filter is used to eliminate external influences / battery powered blower is supplying volume flow. - Particle loaded air is passed into the measurement tunnel / probe. → Current work: Further CFD investigation for improved transport efficiency # Thank You for Your Attention!