

PM MEASUREMENTS Investigation and Results from HORIBA

29.04.2021, Greg Filer, Dr.rer.nat Dmytro Lugovyy, Dr.-Ing. Sebastian Gramstat

© 2021 HORIBA, Ltd. All rights reserved

Agenda

1	Background Information and Test Setup	
2	Measurement Results	
3	Suggestions and Points for Discussion	

Particulate Number (PN) & Mass (PM)

Two Different Metrics Regulated by EU Legislations

Particle Generation from Brake Systems:

- 1. Abrasion effects
- 2. Combustion-like effects at higher temperatures (<170°C)
 - Generation of VOC (additional gaseous compounds as well?)
 - Nano-Particle generation

PM standard underestimates smallest nanoparticles representing the largest health hazard Introduction of Particulate number (PN) counting as new metric for nanoparticles emitted by combustion engines

Definition of Particulate Matter

Defined by the filter weighing method – Vehicle Emissions Experience

- Exhaust gas is diluted by ambient air in dilution tunnel -> exhaust duct of brake dyno
- PM is regarded as the sum of the solid and volatile components filtrated on the PM filter.
- PM is generally regarded as the mass which is weighed, after PM filter is allowed to soak / be conditioned

PM Findings from Measurements Performed in 2018

 In a presentation from Dr. Lugovvy (HORIBA) and Dr. Gramstat (AUDI) from the PMP50 Meeting, a relationship between PM Measurements and air-cooling speed was found and presented

WLTP class 3 cycle: Influence of sampling point and air flow

> No big difference for sampling

point

PM decreases as air velocity/air

flow rate decreases

Settling problems are expected by theory for D14 sampling point but not observed in experiment

HORIBA

5

Test Setup

Brake Dynamometer

- HEPA H13 Filter installed in supply air duct
- Vertical supply/exhaust air routing (top to bottom)
- Temperature measured through embedded thermocouples in the brake disc
- Brake fixture type: L0
- Stainless Steel enclosure
- Distance from disc assembly to sampling point ~ 4,5 m -> 13D (equivalent diameter of exhaust duct 0,350m)
- Air conditions:
 - Volume flow rate range: 500 4000 m³/h, @ 20°C, 50% r.H

HORIBA concept

Installation of a HEPA filter upstream of the brake cabinet

- The installation of a HEPA filter into the cooling air duct
 - reduce the particle background concentration
 - minimize the related falsifying effect on the measurement results!
- Above is an example of a PN background check carried out before the WITP Procedure was started
- The installation of the HEPA filter also improves the reproducibility of the brake dust measurements
- PM background? A PM background concentration can not be measured gravimetrically due to low loadings...

Particle Background Check - WLTP

Brake System Enclosure

Installation of a brake enclosure (vertical cooling approach)

Smooth transition angles to minimize the possibility of particle losses

Stainless steel enclosure

- Stability against chemical reactions
- Static / magnetic effect minimization

Brake assembly installed in the center of the incoming cooling air

Test Setup Measurement Equipment

- PM Measurements under Isokinetic Conditions: HORIBA DLS-ONE (gravimetric collection method)
 - $PM_{\rm 2.5}$ and $PM_{\rm 10}$ Filters
- PN Measurements: HORIBA MEXA2110SPCS (not focus of this presentation)
 - $-\,$ Particle Counting Size Range: 10nm to 2,5 μm

HORIBA DLS-ONE Cyclone/ filter-holder rack 2 x sampling IIIHIII (PM10 + PM2, 5)Cyclone Cyclone (2,5µm) (10µm) PM2,5 filter holder PM10 filter holder Bypass filter Bypass filter HORIBA

Automotive

Audi

Working principle: Gravimetric filter

Particle mass measurement by the gravimetric filter method in HORIBA's DLS-ONE¹

- The DLS-ONE is a combination of two cyclones (10µm and 2,5µm), two sample filters (+ bypass filters for soak times etc.) and a high-precision venturi-flow-meter to ensure a stable flow through the filter medium with a defined filter face velocity
- Isokinetic sampling is realized by means of different sampling probes
- Different filter materials can be used in this device
 - Standard used: Teflon coated glass fiber
 - Filter material has an influence on pressure drops, ensure same filter material in both bypass and sampling lines

HORIBA

Challenges in Particulate Determination

- > 47 mm Filter Mass : ~ 100 mg
- > Particulate Mass : $0.5 \sim 1.5$ mg per brake dust test

Error factors

HORIBA

Automotive

- Filtration: Dilution ratio, D.air temp., absorption of gaseous components
- > Weighing: Vibration, static electric charge, airflow, buoyancy
- > Filter stabilization: Absorption and vaporization of volatile and gaseous components

PM Weighing Procedure

- Scale used: XPR2U Micro Scale with anti-static accessory
 - Measurement range: 0 2g
 - Resolution: 0,1 ug
 - Filter weight (empty): 90 mg
- Located in climatic controlled weighing closet
 - Air Temperature: 20°C
 - Air Humidity: 50% r.H
- Filters are allowed to condition for at least 12h before test

PM Measurement Results PM10

- Vehicle: VW Transporter Flatbed
 - Front axle unloaded (70 kgm²)
 - Front axle fully loaded (122 kgm²)
- Brake pad material: ECE
- Air flow rate: 3000 m³/h
- Isokinetic sampling performed

PM Measurement Results PM2.5

- Vehicle: VW Transporter Flatbed
 - Front axle unloaded (70 kgm²)
 - Front axle fully loaded (122 kgm²)
- Brake pad material: ECE
- Air flow rate: 3000 m³/h
- Isokinetic sampling performed

Points for Further Discussion / Recommendations

- The effect on Flow drift (gradual changes in the and flow pulsations)
- Filter Face Velocity effects?
- Proper flow control and adjustment (filter face velocity remains constant)
- Particle bounce -> what is the effect on the shifting of the cut-point
- Filter material:
 - Teflon Coated
 - Pure teflon membrane

Contact

HORIBA Europe GmbH

Greg Filer

00

Product Manager – Product Line Brake Systems

R

m

Application Manager – Brake Dust Measurements

Landwehrstraße 55, 64293 Darmstadt (Germany)

Phone: +49 6151-5000-2498

E-mail: gregory-kanae.filer@horiba.com www: <u>http://www.horiba.com</u>

