

Brake particle losses in ducts

April 2022

ILS: Overview Duct diameter/Volume flow

- Duct diameters ranging from 110 mm 355 mm
- Majority of labs at duct diameters of about 150 mm

ILS: Overview Duct diameter/Volume flow

Three flow scenarios:

Low Velocity/Low Flow				
		Velocities		
Diameter	Flows	[m/s]		
110	70	2,0		
150	130	2,0		
250	361	2,0		
350	707	2,0		

High Velocity/Flow				
		Velocities		
Diameter	Flows	[m/s]		
110	430	12,6		
150	800	12,6		
250	2222	12,6		
350	4355	12,6		

Ducting co	nstant	
		Velocities
Diameter	Flows	[m/s]
150	70	1,10033
150	300	4,715702
150	800	12,57521
150	1320	20,74909

Duct Layouts

Three exemplary layouts are considered (all horizontal):

Particle loss models

Particle penetration calculation based on empirical equations.

Diffusional losses:

laminar: Holman (1972)

turbulent: Friedlander (1977)

Gravitational losses:

laminar: Heyder&Gebhart (1977)

Turbulent: Schwendiman, Stegen & Glissmeyer (1975)

Inertial Deposition

Tube: Liu&Agarwal (1974)

Bend: Pui,Romay-Novas & Liu (1987)

Penetration at particle diameter of 10.7 μ m, 110 mm \rightarrow 350 mm

- Larger duct diameters show higher penetration (but result in larger space requirements for installation).
- Low velocity scenarios show higher penetration than high velocity scenarios.
- Duct losses are low (e.g. for 5 µm particles worst case ca. 1.5%)

Penetration @ 10.7 µm for 150 mm ducting diameter

- At a given duct diameter, particle losses increase for high and low airflows.
- Particle losses increase for layouts with higher complexity.

Estimated impact on PM₁₀ emissions

Estimated impact on PM₁₀ emissions

 $p_D [\mu m]$

150mm 1320m³/h Lay3

10⁰

10¹

Estimated impact on PM₁₀ emissions

10¹

p_D [μm]

Braking size distr. (loss corrected)

150mm 300m3/h Lay1 150mm 1320m3/h Lay3

10⁰

Even for worst case assumptions (from ILS), The expected difference in PM10 is low (about 2.5%)