

Measurement Methods for Noise Emitted by Light-duty Vehicles in Multiple Driving Mode Conditions

-Historical Background, Current Development and Future Topics-

16th ASEP IWG Conference call on 4th-5th June, 2020.

Dongming Xie

Contents

- The Origin of the Test Methods
- Background Knowledge
- Briefing of the Test Methods
- Comparison with ASEP Test Method
- Relevant Research Topics
- Technical Route and Conclusions
- References and Acknowledgement

The Origin of Test Methods Standard

- China released plans and a long-term technology roadmap for vehicle noise standards and regulations during the 62th session of WP.29 GRB in 2015.
- In the roadmap, it is realized that a noise regulation system to cover all typical behaviors of all vehicles on road will be the top priority of China.
- During the recent 5 years, all 11 items in the left Fig. have been covered or planned by 5 standards projects in China noise standards system.

● National Standard of China GB/T < Measurement Methods for Noise Emitted by Light-duty Vehicles in Multiple Driving Mode Conditions>

- The test methods standard project launched in 2018 and is now waiting for the technical review after comments.
- It is expected for corresponding to the test methods of UN Regulation No.51-03 ASEP.
- The use of China Automotive Test Cycle (corresponding to WLTP) makes it possible for a refined and accurate design.

Background Knowledge

• From GRB(P) and ASEP

- The discussion for creating current Method B (Documents from Netherlands and OICA)
- Assessments of UN Regulation No. 51-03 (Venoliva Study)
- ISO system (Annex A of ISO 362-1: 2007, from test cycles to test methods)
- ASEP system (Documents from previous ASEP IWG)

• From Ecology and Environment Fields

- Environmental quality standards for noise (Noise functional areas of China, Japan and WHO Europe)
- Complexity of traffic noise (functional areas planning, noise sources and transfer paths)
- Complexity of vehicle noise (Noise sources, and real driving conditions)
- Opinions and technologies for designing the test methods are derived from historical researches of GRB(P), ASEP, ISO, China and actual environmental status.

Key Parameters for Tests

• Key parameters for test methods

- Vehicle Speed
- Engine Speed
- Vehicle Acceleration
- Engine Acceleration

- Vehicle speed " is the most sensitive parameters for environmental noise.
 - ① Set realistic and representative speeds;
 - ② Use reasonable gear @ speed for realistic engine speed;
 - 3 Control the accelerator properly @ speed for reproduced.

Realistic and Sensitive Speeds

• 30km/h, 50km/h and 70km/h for acceleration noise, 80km/h and 110 (90) km/h for cruise noise.

Drive Time Distribution (%)	0~70km/h	>70km/h	>75km/h	>80km/h
Acceleration	34.80%	18.99%	16.72%	12.45%
Deceleration	33.40%	18.72%	16.40%	13.92%
Cruise	31.80%	62.29%	66.88%	73.63%

Road type	Residential (urban/ suburban)	Residential (urban/ suburban)	Main roads (urban/ suburban)	Main roads (urban/ suburban)	Arterial roads (urban/ suburban)	Urban motorways (urban/ suburban)	Rural motorways	Rural roads	Total
Traffic type	intermittent	free flow	intermittent	free flow	free flow	free flow	free flow	free flow	
Speed range	V<50	V<50	V<50	V<50	50 <v<70< td=""><td>70<v<120< td=""><td>80<v<130< td=""><td>50<v<100< td=""><td></td></v<100<></td></v<130<></td></v<120<></td></v<70<>	70 <v<120< td=""><td>80<v<130< td=""><td>50<v<100< td=""><td></td></v<100<></td></v<130<></td></v<120<>	80 <v<130< td=""><td>50<v<100< td=""><td></td></v<100<></td></v<130<>	50 <v<100< td=""><td></td></v<100<>	
Full road length(km)	547998	1112603	83030	168576	100643	5032	95610	2918633	5032125
Percentage of total road network	11%	22%	2%	3%	2%	0,1%	2%	58%	100%
Selected road length (km)	356199	723192	66424	134861	90578	4026	47805	1459316	2882401
Percentage of selected road network	12%	25%	2%	5%	3%	0,1%	2%	51%	100%
Estimated avg. exposed inhabitants/km	250	250	500	500	500	1000	50	20	
Typical distance to road (m)	15	15	15	15	15	50	50	50	
Applied penalty, dB	3	0	3	0	0	0	0	0	
Noise sources									
~	Powertrain, tyre	Tyre, powertrain	Powertrain, tyre	Tyre, powertrain	Tyre	Tyre	Туге	Tyre	
	Powertrain	Powertrain, tyre	Powertrain	Powertrain, tyre	Powertrain, tyre	Powertrain, tyre	Powertrain, tyre	Powertrain, tyre	

Choose Reasonable Gears

• The increasing gear numbers are expected for covering frequent speed distribution better.

Test	speeds	30km/h	50km/h	70km/h	≥80km/h
Formulas for Test Gears		(1+X/2)/2+1	(1+X/2)	(X+X/2)/2+1	
		Calculated Test G			
	4	2	3	4	
	5	2	3	4	
6 Total gears 7	3	4	5		
	3	4	6	High act lackable goor	
	8	3	5	7	Highest lockable gear
	9	3	5	7	
	10	4	6	8	
* Round down	if the result is not	an integer.			

Principle for lockable gears:

Try to use the calculated gears shown above, but if cannot, it is permitted to make measurement as per the adjacent gear recommended by manufacturers.

Principal for non-lockable gears:

- For non-lockable automatic transmission, adaptive transmission or CVT, it is allowed to use additional electronic or mechanical devices to fix the gear ratios.
- If A is unsatisfied, use Gear position D and try to avoid gear shifting to a gear ratio which is not used in urban traffic at least.

Control the Accelerator Properly

How to use accelerator:

- When test vehicle enters line AA' or pre-acceleration position point before line AA', quickly depress acceleration pedal to **appropriate position (POT or WOT)** and keep the pedal at the position **stably**;
- Release the accelerator until the rearmost part of test vehicle passes line BB'.

How to calculate the acceleration:

- Record $v_{AA'}$, $v_{PP'}$ and $v_{BB'}$ and perform test acceleration calculation;
- Acceleration formulas are the same as UN Regulation No. 51-03.

What's the target acceleration:

Test Speeds	30km/h	50km/h	70km/h	≥80km/h
Accelerator Position	POT or WOT (Both are possible)			POT (Cruise)
Acceleration (m/s²)	0.5≤a _{test} ≤3.5	0.5≤a _{test} ≤3.0	0.3≤a _{test} ≤2.5	a _{test} ≤0.15

• The wide range of acceleration is for purpose of covering different vehicle performance.

Scope, Sub-categories and Summary

Full scope:

• M_1 , N_1 , M_2 (GVM ≤ 3 500kg)

Sub-categories:

- M₁(PMR < 90kw/t): 2 runs @ 30km/h, 50km/h, 70km/h, 80km/h, 110km/h;
 - Thereinto, Multi-purpose Van: 2 runs @ 30km/h, 50km/h, 70km/h, 80km/h, 90km/h.
- M₁(PMR≥90kw/t): 2-4 runs @ 30km/h, 50km/h, 70km/h; and 2 runs @ 80km/h, 110km/h.
- N_1 and M_2 (GVM ≤ 3 500kg): 2 runs @ 30km/h, 50km/h, 70km/h; and 2 runs @ 80km/h, 90km/h.

Test speeds (km/h)	V _{PP'} =30±1	V _{PP'} =50±1	V _{PP'} =70±2	
Engine speeds (r/min)	n _{BB'} =Idle to 80%S			
Acceleration (m/s²)	0.5≤a _{test} ≤3.5	0.5≤a _{test} ≤3.0	0.3≤a _{test} ≤2.5	
Tost Coors	(1+X/2)/2+1	(1+X/2)	(X+X/2)/2+1	
Test Gears	D for unlockable			
Accelerator Position	POT or WOT (Both are possible)			
Noise Tested	L _{max} per run for left side and right side separately			
No. of Runs*	2	2	2	
Intermediate Result	Average of per side	Average of per side	Average of per side	
Final result	Higher of averages	Higher of averages	Higher of averages	
*M, (PMR≥90 kW/t), 2 runs can add at different acceleration.				

Test speeds (km/h)	V _{PP'} =80±2	$V_{pp'}$ =110 \pm 2 for M_1 $V_{pp'}$ =90 \pm 2 for others		
Engine speeds (r/min)	n _{BB'} =Idle to 80%S			
Acceleration (m/s²)	a _{test} ≤0.15			
Test Gears	Highest lockable gear or D for unlockable			
Accelerator Position	POT (Cruise)			
Noise Tested (dB(A))	L _{max} per run for left side and right side separately			
No. of Runs	2	2		
Intermediate Result	Average of per side	Average of per side		
Final result	Higher of averages	Higher of averages		

Comparison with ASEP Test Method

Items		GB/T (Draft)	UN ASEP (Draft)
	Speed	20-110 km/h (30, 50, 70, 80, 90, 110km/h)	0-100 km/h (Any, not fixed)
	Engine speed	Idle to 80% S	Idle to 80% S
Control Bangos	Acceleration	0-3.5 m/s ² (corresponding to speed)	0-4.0 m/s ²
Control Ranges	Performance	0-48.6 m ² /s ³ (corresponding to speed)	0-35.0 m ² /s ³
	Gear	Recommended gears (corresponding to speed)	Any
Mode		Any	Any
No. of Runs		10 or 16	[15]
Intermedi	ate Result	Average of per side	
Final result		Higher of averages	[Higher of per side]

The differences between GB/T (Draft) and UN ASEP (Draft):

- GB/T tests at fixed speeds, and builds up ranges for other parameters based on different speed conditions;
- UN ASEP sets general ranges for all parameters, and tests randomly.

Relevant Research Topics

Assessment system

- The potential to combine the test methods with the Statistical Sound Expectation Model.
- The potential to enrich and simplify the current Regulation or standard system.

More vehicle categories

- How is the typical noise pollution, noise sources and test cycles for Heavy-duty vehicles?
- How to design more simplified, accurate and effective test methods for different sub-categories.

Other noise caused by vehicles

- How is the burst noise, the low frequency noise and delivery noise, and how to test properly?

Systematic consideration

- What is the exact role and the target of the current test methods inside the general system?
- The ethical issues of setting control ranges.
- Further more, how the control ranges clear and definite social responsibilities of different participants, and how a new system will match with the new situations?

Technical Roadmap and Conclusions

- Noise sources, test cycles and noise issues are the three key source powers for creating the test methods. More studies are needed for the correlations.
- The big data from environmental noise monitoring and test cycle studying makes the previous technical route for test methods more possible, more accurate and it should be proved effective.
- The development of ASEP Sound Model are releasing more space for the creation of test methods and assessments.

Reference and Acknowledgement

- Gerhard, H.M.: Presentation on Noise test Results of vehicles measurement according to the current ISO 362 test. WP.29 GRB Thirty-sixth Session, Geneva, 26-28 February 2002.
- De Graaff, E.: Presentation on the ACEA method, limit values and the demands on noise sources. WP.29 GRB Thirty-sixth Session, Geneva, 26-28 February 2002.
- ISO: ISO 362-1: 2007. Measurement of Noise Emitted by Accelerating Road Vehicles Engineering Method Part 1: M and N Categories. Geneva, 2007.
- Dittrich, M.: Impact assessment of the policy options Venoliva Study. WP.29 GRB Fifty-second Session, Geneva, 6-8 September 2010.
- China: Plans for China vehicle noise standards working group. WP.29 GRB Sixty-second Session, Geneva, 1-3 September 2015.
- Gerhard, H.M.: Traffic Noise Emission of Light Duty Vehicles Sound Sources and Influence Factors. 2017 International Conference on Automotive NVH Control Technology of SAE-China, Nanjing, 02 May 2017.
- China: ASEP SCOPE and Border. ASEP 5th Session, Tokyo, 7-9 November 2017.
- Liu, Y.: Feasibility Study of Using WLTC for Fuel Consumption Certification of Chinese Light-Duty Vehicles. SAE International, 03 April 2018.
- National Standard of China: GB/T 38146.1-2019 China automotive test cycle Part 1: Light-duty vehicles (2019).
- Swiss Confederation: Maps of Switzerland. https://map.geo.admin.ch (2020).

Web site: www.catarc.org.cn

