# Risk analysis automatic service door operation in case of detection of a fire in the engine compartment or separate heater compartment 

OICA/CLCCR-Delegation: Peter Jansson, Michael Becker, Pascale Reyntjens, Philippe Genest, Lars-Eric Ericsson, Max Braak<br>20200615

## Risk analysis to evaluate proposal below

- Reference: Document-No. 06-11
- UN Regulation No. 107 (Uniform provisions concerning the approval of category $\mathbf{M}_{\mathbf{2}}$ or $\mathbf{M}_{\mathbf{3}}$ vehicles with regard to their general construction)
- Draft proposal for amendments of UN Regulation No. 107
- I Proposal
- UN R107, Annex 3
- Insert a new paragraph 7.5.1.6., to read:
- "7.5.1.6. In the case of vehicles of Classes II, III and B, having the engine located to the rear of the driver's compartment, and in the event of excess temperature in the engine compartment or in any compartment where a combustion heater is located the emergency lighting system according to paragraph 7.8.3. shall automatically activate, and the power-operated exits situated on the side of the vehicle that is nearer of the side of the road corresponding to the direction of traffic for which the vehicle is designed shall open automatically when the vehicle is stationary or driving at a speed less than or equal to $3 \mathrm{~km} / \mathrm{h}$.
- II Justifications
- Automatic exits opening
- BMFE undertook the task to construct a proposal mandating automatic opening of the power-operated exits in the case of excessive temperature.
- The relevant criteria for capturing this new requirement are as follows:
- Position of the engine to the rear of the driver's compartment
- Type of power operating door (see paragraph 7.6.7.2.) : restrict the requirement only to power operated service doors.
- Restrict the requirement only to service doors
- Speed $<3 \mathrm{~km} / \mathrm{h}$ or vehicle is stationary
- Proper side of the vehicle (according to the direction of traffic)

|  | Identified risk | Current legislation |  |  | Proposed legislation |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Motorway 100km/h | Probability | Consequences | P* ${ }^{\text {C }}$ | Probability | Consequences | P* ${ }^{\text {C }}$ |
| R1 | Door opening takes long time | 3 | 5 | 15 | 2 | 5 | 10 |
| R2 | Hard to find stop area for vehicle | 3 | 2 | 6 | 3 | 2 | 6 |
| R3 | Passenger falling out from service door $<3 \mathrm{~km} / \mathrm{h}$ | 1 | 2 | 2 | 2 | 2 | 4 |
| R4 | Low visibility and smoke in passenger compartment | 1 | 4 | 4 | 1 | 4 | 4 |
| R5 | Passenger gangway blocked | 1 | 4 | 4 | 1 | 4 | 4 |
| R6 | Limited passenger space outside vehicle | 3 | 2 | 6 | 3 | 2 | 6 |
| R7 | Opening of doors in traffic jam(low speed <3 km/h) | 0 | 3 | 0 | 1 | 3 | 3 |
| R8 | Error signals from heat sensor/unintended operation | 2 | 2 | 4 | 2 | 2 | 4 |
| R9 | Error signals from speed sensors together with fire alarm | 1 | 0 | 0 | 1 | 2 | 2 |
| R10 | Vehicle immobilised by starting prevention device (if fitted) | 0 | 2 | 0 | 1 | 2 | 2 |
|  | Total |  |  | 41 |  |  | 45 |
|  |  |  |  |  |  |  |  |
|  | Two-way road 80km/h | Probability | Consequences | P* C | Probability | Consequences | P* C |
| R1 | Door opening takes long time | 3 | 5 | 15 | 2 | 5 | 10 |
| R2 | Hard to find stop area for vehicle | 3 | 2 | 6 | 3 | 2 | 6 |
| R3 | Passenger falling out from service door $<3 \mathrm{~km} / \mathrm{h}$ | 1 | 2 | 2 | 2 | 2 | 4 |
| R4 | Low visibility and smoke in passenger compartment | 1 | 4 | 4 | 1 | 4 | 4 |
| R5 | Passenger gangway blocked | 1 | 4 | 4 | 1 | 4 | 4 |
| R6 | Limited passenger space outside vehicle | 3 | 2 | 6 | 3 | 2 | 6 |
| R7 | Opening of doors in traffic jam(low speed <3 km/h) | 0 | 4 | 0 | 1 | 4 | 4 |
| R8 | Error signals from heat sensor/unintended operation | 2 | 2 | 4 | 2 | 2 | 4 |
| R9 | Error signals from speed sensors together with fire alarm | 1 | 0 | 0 | 1 | 2 | 2 |
| R10 | Vehicle immobilised by starting prevention device (if fitted) | 0 | 2 | 0 | 1 | 2 | 2 |
|  | Total |  |  | 41 |  |  | 46 |
|  |  |  |  |  |  |  |  |
|  | Road tunnel $70 \mathrm{~km} / \mathrm{h}$ | Probability | Consequences | $\mathrm{P}^{*} \mathrm{C}$ | Probability | Consequences | $\mathrm{P}^{*} \mathrm{C}$ |
| R1 | Door opening takes long time | 3 | 5 | 15 | 2 | 5 | 10 |
| R2 | Hard to find stop area for vehicle | 4 | 2 | 8 | 4 | 2 | 8 |
| R3 | Passenger falling out from service door $<3 \mathrm{~km} / \mathrm{h}$ | 1 | 2 | 2 | 2 | 2 | 4 |
| R4 | Low visibility and smoke in passenger compartment | 3 | 4 | 12 | 3 | 4 | 12 |
| R5 | Passenger gangway blocked | 1 | 4 | 4 | 1 | 4 | 4 |
| R6 | Limited passenger space outside vehicle | 3 | 4 | 12 | 3 | 4 | 12 |
| R7 | Opening of doors in traffic jam(low speed $<3 \mathrm{~km} / \mathrm{h}$ ) | 0 | 3 | 0 | 4 | 3 | 12 |
| R8 | Error signals from heat sensor/unintended operation | 2 | 2 | 4 | 2 | 2 | 4 |
| R9 | Error signals from speed sensors together with fire alarm | 1 | 0 | 0 | 1 | 2 | 2 |
| R10 | Vehicle immobilised by starting prevention device (if fitted) | 0 | 2 | 0 | 1 | 5 | 5 |
|  | Total |  |  | 57 |  |  | 73 |


|  | Identified risk | Current legislation |  |  | Proposed legislation |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Crossing | Probability | Consequences | P* ${ }^{\text {C }}$ | Probability | Consequences | ${ }^{\text {P* }} \mathrm{C}$ |
| R1 | Door opening takes long time | 3 | 5 | 15 | 2 | 5 | 10 |
| R2 | Hard to find stop area for vehicle | 4 | 2 | 8 | 4 | 2 | 8 |
| R3 | Passenger falling out from service door $<3 \mathrm{~km} / \mathrm{h}$ | 1 | 2 | 2 | 1 | 2 | 2 |
| R4 | Low visibility and smoke in passenger compartment | 1 | 4 | 4 | 1 | 4 | 4 |
| R5 | Passenger gangway blocked | 1 | 4 | 4 | 1 | 4 | 4 |
| R6 | Limited passenger space outside vehicle | 4 | 2 | 8 | 4 | 2 | 8 |
| R7 | Opening of doors in traffic jam(low speed <3 km/h) | 0 | 2 | 0 | 4 | 2 | 8 |
| R8 | Error signals from heat sensor/unintended operation | 2 | 2 | 4 | 2 | 2 | 4 |
| R9 | Error signals from speed sensors together with fire alarm | 1 | 0 | 0 | 1 | 2 | 2 |
| R10 | Vehicle immobilised by starting prevention device (if fitted) | 0 | 2 | 0 | 1 | 5 | 5 |
|  | Total |  |  | 45 |  |  | 55 |
|  | City traffic $25 \mathrm{~km} / \mathrm{h}$ | Probability | Consequences | P* ${ }^{*}$ | Probability | Consequences | P* ${ }^{\text {c }}$ |
| R1 | Door opening takes long time | 1 | 5 | 5 | 1 | 5 | 5 |
| R2 | Hard to find stop area for vehicle | 1 | 2 | 2 | 1 | 2 | 2 |
| R3 | Passenger falling out from service door $<3 \mathrm{~km} / \mathrm{h}$ | 1 | 2 | 2 | 1 | 2 | 2 |
| R4 | Low visibility and smoke in passenger tuber | 1 | 4 | 4 | 1 | 4 | 4 |
| R5 | Passenger gangway blocked | 1 | 4 | 4 | 1 | 4 | 4 |
| R6 | Limited passenger space outside vehicle | 1 | 2 | 2 | 1 | 2 | 2 |
| R7 | Opening of doors in traffic jam(low speed $<3 \mathrm{~km} / \mathrm{h}$ ) | 0 | 2 | 0 | 4 | 2 | 8 |
| R8 | Error signals from heat sensor/unintended operation | 2 | 2 | 4 | 2 | 2 | 4 |
| R9 | Error signals from speed sensors together with fire alarm | 1 | 0 | 0 | 1 | 2 | 2 |
| R10 | Vehicle immobilised by starting prevention device (if fitted) | 0 | 3 | 0 | 4 | 3 | 12 |
|  | Total |  |  | 23 |  |  | 45 |
|  | Probability to happen. Scale 0-5, Consequences it it happen. Scale 0-5 |  |  |  |  |  |  |

## Conclusion

- Pre req. Fire alarm on when bus is driving.
- 1 Driver need to find a stopping place as quick as possible.
- 2 Open door as quick as possible.
- Total risk scoring in relation to traffic type
- Motor way road speed up to $100 \mathrm{~km} / \mathrm{h}$, risk scoring increased from 41 to 45
- Two-way road speed up to $80 \mathrm{~km} / \mathrm{h}$ risk, scoring increased 41 to 46
- Road tunnel speed about $70 \mathrm{~km} / \mathrm{h}$, risk scoring increased 57 to 73
- Crossing risk scoring increased 45 to 55
- City traffic speed $25-30 \mathrm{~km} / \mathrm{h}$, risk scoring increased 23 to 45
- Distance to find a stopping position depending on traffic type (assuming 30s stopping time)
- Motor way ( $100 / 3,6 \times 30=833$ )
- Two-way road ( $80 / 3,6 \times 30=667$ )
- Road tunnel $(70 / 3,6 \times 30=583)$
- Crossing
- City traffic $(25 / 3,6 \times 30=208)$

800 meters
600 meters
500 meters
$<100$ meters
200 meters

- Conclusion
- Proposed legislation will increase risk level for passengers in all traffic types looked at.
- If service doors are opened automatically in case of detection of a fire in the engine compartment or separate heater compartment at a speed $<3 \mathrm{~km} / \mathrm{h}$ the risk is higher that the vehicle can't be moved to a safe place to stop for evacuation by the driver.
- Recommendation
- No change of legislation

