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Presentation Summary (1/2)

Web-Meeting of the EVE IWG

June 29th, 2020

Follow-up of the JRC activities for contribution to the EVE IWG under the 

“in-vehicle battery ageing” topic 

Current Status (Jan-March 2020), i.e. what’s old:

• Exploring power fade models already implemented in TEMA 

• Exploring V2G ageing effect on top of normal usage of the vehicles

• Exploring comparison with new real-world data 

• Exploring new battery chemistry models



Presentation Summary (2/2)

Follow-up of the JRC activities for contribution to the EVE IWG under the 

“in-vehicle battery ageing” topic 

Current Status (May 2020), i.e. what’s new:

• Exploring comparison with new real-world data 

Web-Meeting of the EVE IWG

June 29th, 2020



Summary of the logical passages

#3

Real-world
Driving data

#2

Vehicle reference 
architectures

(from cell-to-vehicle)

#1

Performance-based 
models

(validated on exp. at cell-level)

#4

Durability Scenarios

(Yrs and/or km to EoL)

Web-Meeting of the EVE IWG

June 29th, 2020



Performance based models (SotA)

Calendar + Cycle (4 Combinations):

#1 (LiFePO4): Sarasketa-Zabala et Al. (2013/14) model for calendar plus Wang et Al. (2011) model for cycle;

#2 (LiFePO4): Sarasketa-Zabala et Al. (2013/14) model for calendar plus Sarasketa-Zabala et Al. (2015) model for cycle;

#3 (NCM + Spinel Mn): Wang et Al. (2014) for calendar plus Wang et Al. (2014) for cycle;

#4 (NCM-LMO): Wang et Al. (2014) for calendar plus Cordoba-Arenas et Al. (2015) for cycle

Capacity fade Power fade

Calendar Cycle Calendar Cycle

LiFePO4

Sarasketa-Zabala et Al. 
(2013/14);

Wang et Al. (2011);

Sarasketa-Zabala et Al. (2013);

Sarasketa-Zabala et Al. (2013);

Sarasketa-Zabala et Al. (2015);

NCM + spinel Mn Wang et Al. (2014); - Wang et Al. (2014);

NCM – LMO -
Cordoba-Arenas et Al. (2014);

-
Cordoba-Arenas et
Al. (2015);

Web-Meeting of the EVE IWG

June 29th, 2020



Implementation of the performance based 
models into JRC TEMA (assumptions 1/2)

Vehicle Electric Architectures (examples)

Vehicle
Type

Battery Size 
[Wh]

Battery Shape
No. of Cells

[#] and Type
Reference 
Voltage [V]

Electric 
Architecture

Usable Energy at 
BoL [Wh]

Usable 
Energy at EoL 

[Wh]

Reserve 
[% of battery 

capacity]

Energy 
consumption 

[Wh/km]

HP PHEV PHEV 1 16,000 T-shaped 192 – pouch 365 2P-96S 12,000 9,600 25% 205

Mid-sized 
PHEV

PHEV 2 8,800 Parallelepiped 95-Prismatic 351 95S 6,600 5,280 25% 160

Mid-sized 
PHEV

PHEV 3 12,000 Parallelepiped 80-Prismatic 300 80S 9,000 7,200 25% 194

Mid-sized BEV BEV 1 24,000 Parallelepiped 192 – pouch 360 48S-2P-2S 18,000 14,400 15% 210

HP large-sized 
BEV

BEV 2 85,000 Flat
6,912 -

cylindrical
345 16S-72P-6S 63,750 51,000 15% 235

HP large-sized 
BEV

BEV 3 75,000 Flat
4,416 -

cylindrical
345 4S-46P-23|25S 56,250 45,000 15% 180

HP large-sized 
BEV

BEV 4 95,000 Flat 432 – pouch 396 4P-108S 71,250 57,000 15% 262

PHEV 1 PHEV 2 PHEV 3 BEV 1 BEV 2 BEV 3 BEV 4

Web-Meeting of the EVE IWG
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Comparing JRC TEMA ageing prediction with 
additional data from the field

• What can 6,000 electric vehicles tell us about EV battery health? Published on December 13, 2019 in 
Electric Vehicles by Charlotte Argue (https://www.geotab.com/)

• Compare the average battery degradation for different vehicle makes and model years, analysing the 
battery health of 6,300 fleet and consumer EVs, representing 1.8 million days of data.

• From the telematics data processed, providing aggregated average degradation data for 21 distinct 
vehicle models, representing 64 makes, models, and years.

• The degradation data displayed are the average trend line from the data analysed.

• Additionally analyses of:

 high vehicle use

 extreme climates

 charging type.

https://www.geotab.com/

Web-Meeting of the EVE IWG
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Comparing JRC TEMA ageing prediction with 
additional data from the field

https://www.geotab.com/

Web-Meeting of the EVE IWG
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Comparing JRC TEMA ageing prediction with 
additional data from the field

https://www.geotab.com/

Web-Meeting of the EVE IWG
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EVE-30-12e.pdf & EVE-34-16e.pdf
Data comparison: Tesla data - #4 (NCM-LMO) 

Night AC recharge – Modena Data Night AC recharge – Amsterdam Data

0 50.000 100.000 150.000 200.000 250.000
70

75

80

85

90

95

100

105

Distance, [km]

R
e
m

a
in

in
g
 R

a
n
g
e
 [

%
]

 

 

Tesla data [Steinbuch]

Tesla data fit [Steinbuch]

Amsterdam Night AC Recharge

*Technical University Eindhoven, May2018, https://steinbuch.wordpress.com/2015/01/24/tesla-model-s-battery-degradation-data

Web-Meeting of the EVE IWG
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EVE-30-12e.pdf
Data comparison: Nissan Leaf data - #4(NCM-
LMO)

Night AC recharge – Modena Data

*Myall, Dima Ivanov, Walter Larason, Mark Nixon, Henrik Moller, Preprints, 2018, doi:10.20944/preprints201803.0122.v1

Night AC recharge – Amsterdam Data

#4 NCM-LMO cell assumed; it might differ from the battery chemistry of the 24kWh Nissan Leaf data  

Web-Meeting of the EVE IWG

June 29th, 2020



EVE-32-13e.pdf

Experimental data from Canada

*Aaron Loiselle-Lapointe, Samuel Pedroso

In-vehicle validation of the model (assumptions):
• Uniform T, DoD, C-rate and Ah-throughput;
• T, DoD @ battery level;
• C-rate and Ah-throughput @ cell level;
• Qloss-total = Qloss-cal. + Qloss-cycle - Reserve(10%);

• NCM-LMO model (closer to real LEAF chemistry i.e. LiMn2O4 with LiNiO2)

 79,000 km driven in 3.8 years
 two new comparisons at 63,000km and 79,000 km

Web-Meeting of the EVE IWG

June 29th, 2020



Generalising JRC TEMA in-vehicle battery 
durability model: is it possible?

#3 

Real-world Driving data

#2 

Vehicle reference architectures

(from cell-to-vehicle)

#1 

Performance-based models

(validated on exp. at cell-level)

#4 Durability Scenarios

(Yrs and/or km to EoL)

Predefined calendar and cycling models (Model 1 to Model 5)

Predefined reference architectures

Fitting equations and parameters for calendar and cycling ageing

Customised: parameters (still to check this possibility )

Predefined different EU duty cycle and recharging strategies

Customised: average information (see table of inputs)

Predefined different vehicle technologies

Predefined different recharging strategies

Web-Meeting of the EVE IWG

June 29th, 2020



Hierarchical relation of the variables
(tentative)

• Driving pattern / mileage, i.e. time, SOC, DOD, Ah, C-rate;

• Environment temperature for the calendar ageing (No

active BMS)

• Electrical architecture of the battery;

• Li-Ion chemistry;

• Environment temperature on the cycling ageing if BMS

active

Is the phenomenon fully comprehended? NO  More efforts needed

Level 1 (highest influence)      

Level 2 (high influence)           

Level 3 (mid-to-low influence) 

Web-Meeting of the EVE IWG

June 29th, 2020



Web-Meeting of the EVE IWG

June 29th, 2020

Input/output of in-vehicle battery durability 
module of JRC TEMA platform

HV 
battery 

chemistry 

Output from JRC TEMA 

Capacity fade Power fade

Calendar Cycle Calendar Cycle

LiFePO4

Sarasketa-Zabala et 
Al. (2013/14);

Wang et Al. (2011);

Sarasketa-Zabala et Al. 
(2013);

Sarasketa-Zabala et Al. 
(2013);

Sarasketa-Zabala et Al. 
(2015);

NCM + 
Spinel Mn

Wang et Al. 
(2014);

- -

NCM – LMO -
Cordoba-Arenas et Al. 

(2014);
-

Cordoba-Arenas 
et Al. (2015);

Input to JRC TEMA

General parameters

• Age of the car since manufacture [yrs]
• Run-in km
• Vehicle technology (BEV, PHEV)
• EoL threshold for capacity fade and power fade

Environmental 
parameters 

• Ambient temperature max and min for each 
month of the year [°C]

Duty cycle parameters

• Average number of trips per month
• Average driven distance [km]
• Average driving time [h]
• Average driving speed  [km/h]
• Average energy consumption [Wh/km]
• Average resting time without charging [h]
• Average parking time [sec]

Charging data 

• Average recharging time [h]
• Recharging power [kW]
• Charging mode/level
• Average number of recharge per month

Battery parameters

• Battery chemistry 
• Battery architecture (no. of modules, no. of 

cells, cell voltage, cell current, series/parallel 
connection i.e. 48S-2P-2S etc.)

• Reference battery voltage [V]
• Battery capacity [Wh]
• Battery reserve [%]
• Average weighted battery temperature [°C]
• Battery temperature min and max (BMS) [°C]
• Average battery SoC min driving [%]
• Average battery Delta SoC during charging [%]
• Average battery SoC parking no charging [%]
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Implementation of the performance based 
models into JRC TEMA (assumptions, 2/2)

The models have been implemented by adopting the following assumptions:

• the calendar and cycle capacity fades are calculated at cell level (uniform ageing assumption);
• the model assumes average quantities in the reference period per each vehicle for DOD, C-rate, Ah-

throughput and temperature;
• DOD and temperature are assumed equal to the battery values, consistently with the uniform fade

assumption, whilst the C-rate and Ah-throughput are scaled from the battery level down to the cell;
• the battery temperature is regulated by the BMS between 22 °C and 27 °C during the driving and recharging

phases (cycle capacity fade modelling), whilst it assumes the ambient temperature in the parking phase
(calendar capacity fade modelling);

• The model capacity fade is calculated at the net of the capacity fade reserve. i.e.:
Qloss-total = Qloss-calendar + Qloss-cycle - Reserve

• 5 recharge strategies adopted:
Str. 1 = Long Stop Random AC;
Str. 2 = Short-Stop Random DC;
Str. 3 = Night AC - Str. 4 = Smart AC;
Str. 5 = Long-Stop AC 3-phases;

Web-Meeting of the GRPE EVE IWG

May 19th, 2020


