

EU-Commission JRC Contribution to EVE IWG: In-vehicle battery durability

Web-Meeting of the GRPE Informal Working Group Electric Vehicles and the Environment (EVE)

> Elena Paffumi 29th June 2020

Presentation Summary (1/2)

Follow-up of the JRC activities for contribution to the EVE IWG under the "in-vehicle battery ageing" topic

Current Status (Jan-March 2020), i.e. what's old:

- Exploring power fade models already implemented in TEMA
- Exploring V2G ageing effect on top of normal usage of the vehicles
- Exploring comparison with new real-world data
- Exploring new battery chemistry models

Presentation Summary (2/2)


Follow-up of the JRC activities for contribution to the EVE IWG under the "in-vehicle battery ageing" topic

Current Status (May 2020), i.e. what's new:

• Exploring comparison with new real-world data

Summary of the logical passages

Performance based models (SotA)

	Сара	acity fade	Power fade		
	Calendar	Cycle	Calendar	Cycle	
LiFePO ₄	Sarasketa-Zabala et Al. (2013/14);	Wang et Al. (2011);			
		Sarasketa-Zabala et Al. (2013);	Sarasketa-Zabala et Al. (2013);		
		Sarasketa-Zabala et Al. (2015);			
NCM + spinel Mn	Wang et Al. (2014);		-	Wang et Al. (2014);	
NCM – LMO	-	Cordoba-Arenas et Al. (2014);	-	Cordoba-Arenas et Al. (2015);	

Calendar + Cycle (4 Combinations):

#1 (LiFePO4): Sarasketa-Zabala et Al. (2013/14) model for calendar plus Wang et Al. (2011) model for cycle;

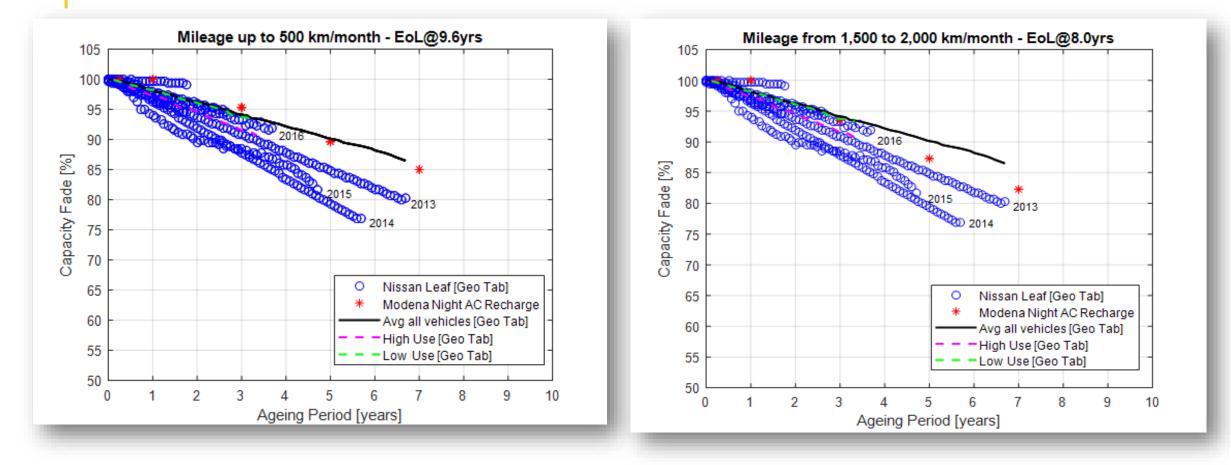
#2 (LiFePO4): Sarasketa-Zabala et Al. (2013/14) model for calendar plus Sarasketa-Zabala et Al. (2015) model for cycle;

#3 (NCM + Spinel Mn): Wang et Al. (2014) for calendar plus Wang et Al. (2014) for cycle;

#4 (NCM-LMO): Wang et Al. (2014) for calendar plus Cordoba-Arenas et Al. (2015) for cycle

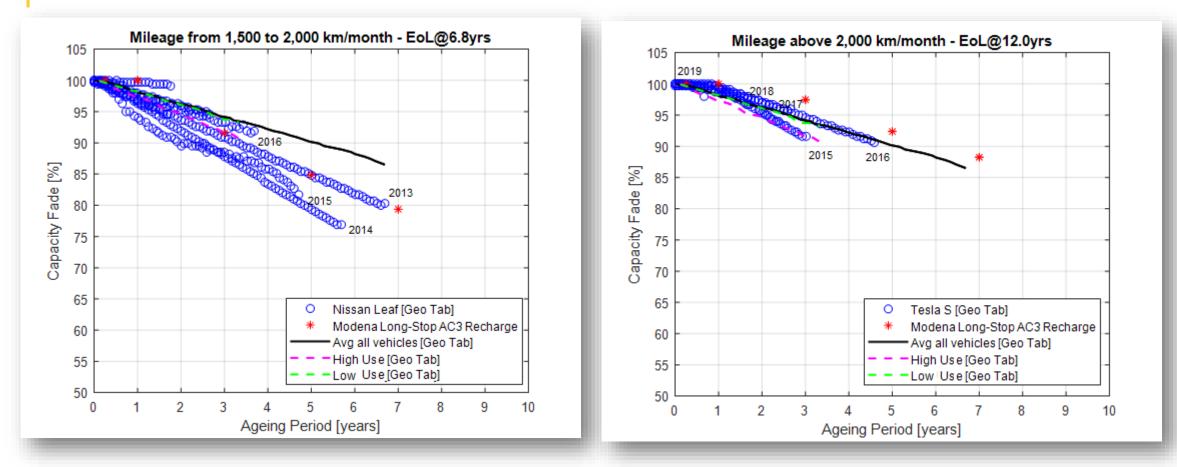
Implementation of the performance based models into JRC TEMA (assumptions 1/2)

Vehicle Electric Architectures (examples)

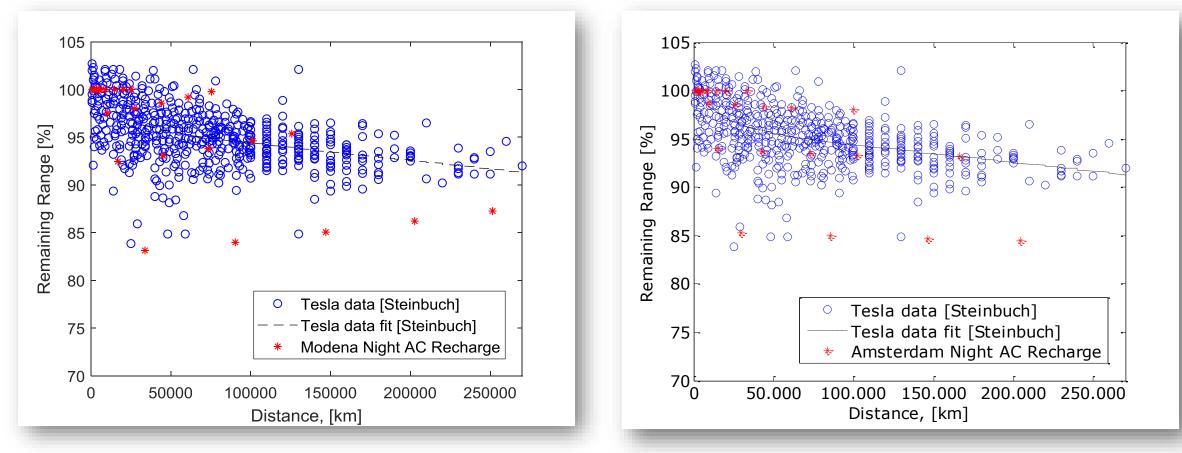

	Vehicl Type	e Battery Size [Wh]	Battery Shape	No. of Cells [#] and Type	Reference Voltage [V]	Electric Architecture	Usable Energy at BoL [Wh]	Usable Energy at EoL [Wh]	Reserve [% of battery capacity]	Energy consumption [Wh/km]
HP PHE	V PHEV	16,000	T-shaped	192 – pouch	365	2P-96S	12,000	9,600	25%	205
Mid-size PHEV	PHEV	2 8,800	Parallelepiped	95-Prismatic	351	95S	6,600	5,280	25%	160
Mid-size PHEV	PHEV	3 12,000	Parallelepiped	80-Prismatic	300	80S	9,000	7,200	25%	194
Mid-sized	BEV BEV 1	24,000	Parallelepiped	192 – pouch	360	48S-2P-2S	18,000	14,400	15%	210
HP large-s BEV	BEV 2	85,000	Flat	6,912 - cylindrical	345	16S-72P-6S	63,750	51,000	15%	235
HP large-s BEV	BEV 3	75,000	Flat	4,416 - cylindrical	345	4S-46P-23 25S	56,250	45,000	15%	180
HP large-s BEV	BEV 4	95,000	Flat	432 – pouch	396	4P-108S	71,250	57,000	15%	262

Comparing JRC TEMA ageing prediction with additional data from the field

- *What can 6,000 electric vehicles tell us about EV battery health?* Published on December 13, 2019 in Electric Vehicles by Charlotte Argue (https://www.geotab.com/)
- Compare the average battery degradation for different vehicle makes and model years, analysing the battery health of 6,300 fleet and consumer EVs, representing 1.8 million days of data.
- From the telematics data processed, providing aggregated average degradation data for 21 distinct vehicle models, representing 64 makes, models, and years.
- The degradation data displayed are the average trend line from the data analysed.
- Additionally analyses of:
 - high vehicle use
 - > extreme climates
 - charging type.

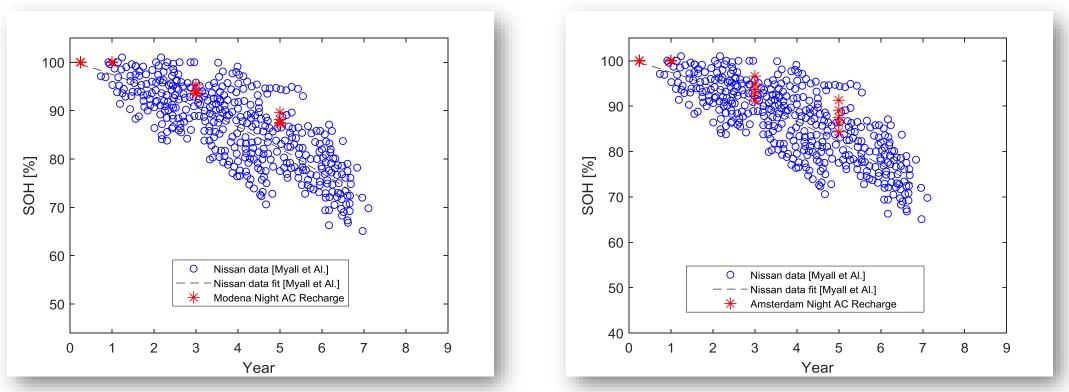

Comparing JRC TEMA ageing prediction with additional data from the field

https://www.geotab.com/


Comparing JRC TEMA ageing prediction with additional data from the field

https://www.geotab.com/

EVE-30-12e.pdf & EVE-34-16e.pdf Data comparison: Tesla data - #4 (NCM-LMO)

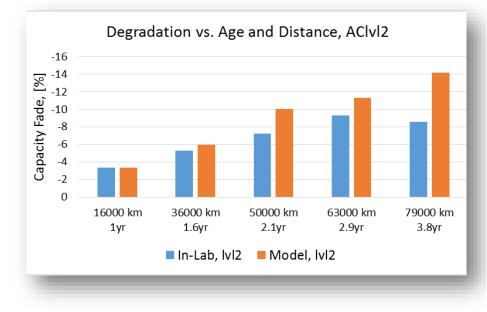

Night AC recharge – Amsterdam Data

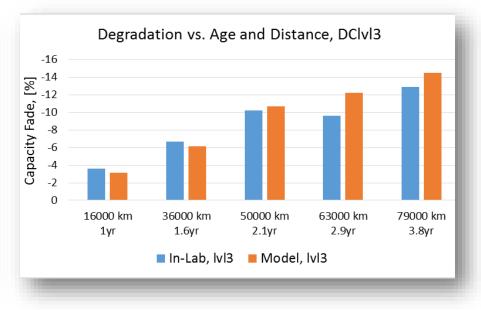
*Technical University Eindhoven, May2018, https://steinbuch.wordpress.com/2015/01/24/tesla-model-s-battery-degradation-data

Night AC recharge – Modena Data

EVE-30-12e.pdf Data comparison: Nissan Leaf data - #4(NCM-LMO)

Night AC recharge – Modena Data


Night AC recharge – Amsterdam Data


#4 NCM-LMO cell assumed; it might differ from the battery chemistry of the 24kWh Nissan Leaf data

*Myall, Dima Ivanov, Walter Larason, Mark Nixon, Henrik Moller, Preprints, 2018, doi:10.20944/preprints201803.0122.v1

EVE-32-13e.pdf Experimental data from Canada

In-vehicle validation of the model (assumptions):

- Uniform T, DoD, C-rate and Ah-throughput;
- T, DoD @ battery level;
- C-rate and Ah-throughput @ cell level;
- Qloss-total = Qloss-cal. + Qloss-cycle Reserve(10%);
- NCM-LMO model (closer to real LEAF chemistry i.e. LiMn2O4 with LiNiO2)
 - > 79,000 km driven in 3.8 years
 - two new comparisons at 63,000km and 79,000 km

*Aaron Loiselle-Lapointe, Samuel Pedroso

Generalising JRC TEMA in-vehicle battery durability model: is it possible?

#1

Performance-based models

(validated on exp. at cell-level)

#2

Vehicle reference architectures

(from cell-to-vehicle)

#3

Real-world Driving data

#4 Durability Scenarios

(Yrs and/or km to EoL)

Predefined calendar and cycling models (Model 1 to Model 5) Fitting equations and parameters for calendar and cycling ageing

Predefined reference architectures

Customised: parameters (still to check this possibility)

Predefined different EU duty cycle and recharging strategies
 Customised: average information (see table of inputs)

Predefined different vehicle technologies

Predefined different recharging strategies

Hierarchical relation of the variables (tentative)

- Level 1 (highest influence)
- Level 2 (high influence)

- → Electrical architecture of the battery;
 - Li-lon chemistry;
 - Driving pattern / mileage, i.e. *time, SOC, DOD, Ah, C-rate;*
- → Environment temperature for the calendar ageing (No active BMS)
- Level 3 (mid-to-low influence) → Environment temperature on the cycling ageing if BMS active

Is the phenomenon fully comprehended? NO \rightarrow More efforts needed

Input/output of in-vehicle battery durability module of JRC TEMA platform

Input to JRC TEMA

General parameters	 Age of the car since manufacture [yrs] Run-in km Vehicle technology (BEV, PHEV) EoL threshold for capacity fade and power fade Ambient temperature max and min for each 	
Environmental parameters	month of the year [°C]	
Duty cycle parameters	 Average number of trips per month Average driven distance [km] Average driving time [h] Average driving speed [km/h] Average energy consumption [Wh/km] Average resting time without charging [h] Average parking time [sec] 	HV battery chemistry
Charging data	 Average recharging time [h] Recharging power [kW] Charging mode/level Average number of recharge per month 	LiFePO ₄
	 Battery chemistry Battery architecture (no. of modules, no. of cells, cell voltage, cell current, series/parallel 	NCM + Spinel Mn NCM - LMC
Battery parameters	 connection i.e. 48S-2P-2S etc.) Reference battery voltage [V] Battery capacity [Wh] Battery reserve [%] Average weighted battery temperature [°C] Battery temperature min and max (BMS) [°C] Average battery SoC min driving [%] Average battery Delta SoC during charging [%] Average battery SoC parking no charging [%] 	he EVE IWG 2020

	Output from JRC TEMA						
HV battery chemistry	Сарас	ity fade	Power fade				
	Calendar	Cycle	Calendar	Cycle			
LiFePO ₄	Sarasketa-Zabala et Al. (2013/14);	Wang et Al. (2011); Sarasketa-Zabala et Al. (2013); Sarasketa-Zabala et Al. (2015);	Sarasketa-Zabala et Al. (2013);				
NCM + Spinel Mn		g et Al. 014);	-	-			
NCM – LMO	-	Cordoba-Arenas et Al. (2014);	-	Cordoba-Arenas et Al. (2015);			

Thank you for the attention Q&A

Contacts Info: EC DG JRC DIR-C ETC Sustainable Transport Unit elena.paffumi@ec.europa.eu

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Implementation of the performance based models into JRC TEMA (assumptions, 2/2)

The models have been implemented by adopting the following assumptions:

- the calendar and cycle capacity fades are calculated at cell level (uniform ageing assumption);
- the model assumes average quantities in the reference period per each vehicle for DOD, C-rate, Ahthroughput and temperature;
- DOD and temperature are assumed equal to the battery values, consistently with the uniform fade assumption, whilst the C-rate and Ah-throughput are scaled from the battery level down to the cell;
- the battery temperature is regulated by the BMS between 22 °C and 27 °C during the driving and recharging phases (cycle capacity fade modelling), whilst it assumes the ambient temperature in the parking phase (calendar capacity fade modelling);
- The model capacity fade is calculated at the net of the capacity fade reserve. i.e.:

Qloss-total = Qloss-calendar + Qloss-cycle - Reserve

• 5 recharge strategies adopted:

- \checkmark Str. 3 = Night AC Str. 4 = Smart AC;
- ✓ Str. 5 = Long-Stop AC 3-phases;

