

03.09.2020

# FE 82.0728/2019 "DEVELOPMENT OF TEST FOR TOXICITY ASSESSMENT OF BUS INTERIOR MATERIALS"

- Dr. Anja Hofmann-Böllinghaus,
- Dr. Tanja Gnutzmann
- 7.5 Technical Properties of Polymer Materials
- Dr. Andrea Klippel,
- Otto-von-Guericke University

www.bam.de

### **Overview**



- Update on test apparatus and Fraction effective dose (FED) model
- > Toxicitxy of smoke gas components
- Update on specimens
- > Update on experiments with new bus materials
- > Update on numerical investigations
- Conclusions

# **Toxicity of smoke gas components DIN tube**



➤ steady-state tube furnace methods: allow correlation to individual fire stages, good agreement with measured large-scale toxic product yields e.g. DIN 534436 furnace, Purser furnace BS 7990

➤ DIN tube furnace investigation of the smoke gas

composition under smoldering conditions









> Fractional Effective Dose Model according D.A. Purser





### carbon monoxide CO:

- colorless, odorless and very toxic gas
- substance group of carbon oxides
- incomplete combustion
- 210-fold higher affinity than oxygen to bind itself on hemoglobin
- blocks oxygen transport in the blood suffocation

### carbon dioxide CO2:

- arises from the complete combustion of carbonaceous fuels
- colorless, odourless, non-flammable
- up to 3 Vol.-% → hyperventilation
- hyperventilation: disturbance of breathing; deep breathing
- accelerated breathing increases the intake of toxic and irritating components



### hydrogen cyanide HCN:

- combustion of nitrogen-containing organic materials
- usually with thermal-oxidative decomposition of polymers
- nitriles, polyamides, polyurethane but also in the combustion of feathers or silk
- aerobic metabolism is brought to a standstill!
   Deficiency of the tissue with oxygen and hyperacidity of the blood
- value of HCN in the case of re smoke poisoning is still a current important subject of research



#### > irritants:

- sensory stimulus to human sensory organs → burns in the respiratory tract, lung damage etc.
- e.g. hydrogen chloride HCl
- hydrogen bromide HBr
- hydrogen fluoride HF
- sulphur dioxide SO2
- nitrogen dioxide NO2
- acrolein CH2CHO
- formaldehyde HCHO



#### > PAH and soot:

- PAH (polycyclic aromatic hydrocarbons )
- aromatic compounds with ring structure
- formation during pyrolysis and incomplete combustion
- hardly soluble in water and very stable
- e.g. naphthalene C10H8
- PAHs can be regarded as a kind of precursor of soot

#### Soot growth according to Frenklach and Wang



### **Update on specimens -textiles**



textiles







upper layer

66 % polyester 28 % wool 6 % viscose

polyester/ polyamid 100% polyester

70 % polyester 30 % wool

basic layer/ lamination

60 % polyester 24 % viscose 15 % cotton 1 % elastane polyethylene fleece

72 % polyester 28 % viscose

50 % polyester 50 % viscose

burning test acc.

UN ECE R 118 Nr. 2 UN ECE-R 118:03

Anhang 8
Beurteilung
gem. DIN 5510
- 2 (05.09)

EN 45545-2:2013 R21, ECE R 118.03

# **Update on specimens - foam**









MA 4245 D

MR 5050 D

upholstery

DIN 75200 FMVSS 302

DIN 75200 FMVSS 302 DIN 4102 B2

FAR 25.853 a, Am. 25-72

Bunsenbrenner

foam – no requirements

# **Update on specimens – foam and textile \$** BAM









# **Update on experiments**



Cone Calorimeter / Vitiated Cone Calorimeter / Mass Loss Calorimeter tests performed for foam and textiles and combination of both

Smoke Density Chamber to be tested in September

DIN tube installation of test apparatus and first tests

# **Cone Calorimeter Tests: PUR foams CO concentration**





# **Cone Calorimeter Tests: PU foams – other smoke gases**







White foam (no requirements)

Green foam (new bus material)

# **Cone Calorimeter Tests: textiles CO2**





# **Cone Calorimeter Tests: textiles – other smoke gas components**





# Cone Calorimeter Tests: combination of textile and green foam: CO2



# Cone Calorimeter Tests: combination of textile and green foam: CO



# Cone Calorimeter Tests: combination of one textile and green foam



# **BAM**

# Implementation of bus cabin for numerical calculations in Ansys CFX





# Implementation of bus cabin for numerical calculations in Ansys CFX



- graphical representation of toxicity assessment with
- Threshold values (color scale blue to red):
- CIT 0.75 to 1.2 (and above) from hazard classes in rail traffic
- ➤ FED 0.1 to 0.3 (and above) from reference values for personal safety
- CIT tends to be more conservative than FED (thresholds exceeded earlier)
- Simulation model set up and first calculations carried out
- Prediction of spatial spread of fire products for chosen scenario



*CIT*, 
$$t = 480 \, s$$



*FED*,  $t = 480 \, \text{s}$ 

### **Conclusions**



Enhancement of bus requirements (vertical test)

reduces flammability, but



does <u>not</u> reduce amount of toxic gases does <u>not</u> reduce heat release rates, e.g. MAHRE

- Toxic smoke gas components and reduced visibility can prevent escape of passengers
- Limiting the amount and toxicity smoke gases gives time for escape of passengers in the event of fire



# Thank you for your attention!