Cabin \(\) ir

Real-driving measurement of in-vehicle air quality and particle filtration

Yingying Cha

Contact: yingying.cha@cabinair.com

CabinAir Sweden AB

Outline

- 1. Objective
- 2. A mobile test method
- 3. Boundary conditions
- 4. Short-term test
- 5. Long-term test
- 6. Summary

Objectives

The objectives are:

- To develop a mobile real-driving test method for in-vehicle air quality and cabin air filter's performance, suitable for fleet test, short-term and long-term test
- To evaluate the filtration performance of cabin air filters of different conditions in real-life driving environments

Data logger and sensors

CabinAir Data logger is a device to power and control sensor measurement, to collect, display and upload data

- Internal sensor module (PM, CO₂, tVOC, temperature & humidity
- External sensor module (PM, temperature & humidity)

- Linux based embedded system
- Single Core 1GHz CPU
- 1GB RAM
- 2 Channel I2C
- 1 Channel LIN
- WIFI

- Bluetooth 4.1 & BLE
- 4G modem
- GPS (USB, optional)
- Amazon web services

Verification of PM sensors

Unive

Aerosol generator: Designed by Tsinghua University: Patent No. CN201210153212.4

DustTrak

5

Sensors

Sampling in let

of DustTrak

Verification of PM sensors

Reference instrument Dust Trak model 8357 (0.3 – 2.5 µm)

Big deviation for the SBRK015 indoor sensor, acceptable performance for the rest sensors (intramodel variability <10%)

Time (hh:mm:ss)

Reference instrument Grimm MiniWRAS 1.371 (10 nm – 35 µm)

Compare sensors' performance to each other, intra-model variability <10%)

Verification of CO₂ sensors

Good consistency of CO₂ sensors' readings, compared to the reference instrument LI-820

Boundary conditions

- Average outdoor PM2.5 concentration greater than 20 μg/m³
- Windows and doors are closed during the whole test
- HVAC ventilation: totally fresh air (CO₂ concentration less than 1000 ppm with less than 2 passengers)
- HVAC fan speed: Low or medium
- Continuous driving for at least 20 minutes
- No interior PM sources, e.g. smoking

Short-term test – overview

- Organizations: CabinAir, Tsinghua University
- Test time and location: May-July 2020, Beijing China
- Test vehicles: 5 recruited volunteer drivers (2 GM, 3 VW)
- Existing cabin air filters, 3 -12 months since installed
- Test method: city-road driving
- Driving routes: Usually between the drivers' home and office in Beijing city
- Parameters measured: PM2.5 and CO₂
- Reference instrument: Dust trak II model 8357, LI-820

Cooperation partner: School of Environment, Tsinghua University

Test vehicles

Institute: CabinAir + Tsinghua University

Test method: real-driving tests

Test vehicles: 5 recruited vehicles (model year 2014-2020)

HVAC ventilation: fresh air

- 5 sets of Data logger units
- 5 indoor sensor modules (PM, CO₂, temp & humidity)
- 5 outdoor sensor modules (PM, temp & humidity)
- Similar location of sensors on different cars

GM Lacrosse

VW Audi

VW Teramont

VW Golf

GM Envision

Location of outdoor/indoor sensor modules

Test result – PM2.5 efficiency

Cabin air cleaning solutions	Number of validated tests	PM2.5 removal efficiency
Existing filters	6	40%
New original OEM filter	5	80%
CabinAir Nordzone filter	7	84%
CabinAir Nordzone system	4	96%

Examples of in-cabin air quality

Existing filter

Newly installed original OEM filter

CabinAir Nordzone™ system

Cabin \(\) ir

Recirculation and CO₂ increase

Recirculation was activated automatically on some vehicles even though it was set to be off in the beginning

Number of passengers: 3

HVAC ventilation setting: recirculation off (confirmed by the driver)

Cabin air filter: Nordzone filter

Long-term test of vehicle filtration

CabinAir Advanced Air Cleaner solution: Based on Blueair HEPASlient™ two-step technology (ionization + filtration)

Vehicle test in Shenzhen, China

Indoor sensors

Long-term performance

Location of test: Shenzhen
Driving time per day: > 60 min

No. of days with filter: 23 No. of days with AAC: 27

Original filter: OEM filter Filter Installed: 2020-08-18 AAC installed: 2019-09-30

Vehicle settings

Ventilation: Fresh air Fan speed: medium

Summary

- 1. The CabinAir mobile test method can be used for short-term, long-term, and fleet vehicle test for VIAQ and filter filtration performance evaluation
- 2. Boundary conditions are important to properly evaluate the performance of different cabin air cleaning solutions
- 3. CO₂ measurement should be done in parallel to avoid impact of recirculation
- 4. Aged filters (>3 months used) can filter out 20-50% small particles
- 5. Ionization technology can significantly improve the PM2.5 efficiencies of both new and aged filters

