Update on Pedestrian Leg Testing

National Highway Traffic Safety Administration
49th GRSP Session
May 2011
Nha Nguyen
Pedestrian Leg Testing

- Projectile leg simulates a moving vehicle hitting a stationary pedestrian
Pedestrian Legforms

TRL

Flex-GT

Flex-GTR
Background

- The Flex-GTR had not been tested against aggressive vehicles in the US fleet and there was concern about its durability.

- There was also concern about topping out the Flex-GTR’s measurement limits (Mallory, 2010).

![Fracture](image1)

![Bend](image2)

![Shear](image3)
Goals of the Testing

• This series of impacts was done to test the Flex-GTR against aggressive US vehicles to see if it would survive.

• Confirm whether the Flex-GTR legform can distinguish marginally performing vehicles from poor performing vehicles.
Test Sequence

- Due to durability concerns, the TRL legform was tested on each vehicle first to rank the vehicles in order of increasing aggressiveness.

- The Flex-GT was then tested on each vehicle to rank them for the Flex-GTR tests.

- This allows us to get in as many tests as possible before possibly damaging the legform.
Test Results
TRL Test Results

Peak Shear Displacement (mm)

<table>
<thead>
<tr>
<th>Car</th>
<th>Displacement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passat</td>
<td>8,1</td>
</tr>
<tr>
<td>Miata</td>
<td>8,9</td>
</tr>
<tr>
<td>Civic</td>
<td>8,9</td>
</tr>
<tr>
<td>Pilot</td>
<td>6,8</td>
</tr>
<tr>
<td>Silverado</td>
<td>8,3</td>
</tr>
<tr>
<td>Equinox</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Peak Bending Angle (deg)

<table>
<thead>
<tr>
<th>Car</th>
<th>Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passat</td>
<td>31,1</td>
</tr>
<tr>
<td>Miata</td>
<td>26,5</td>
</tr>
<tr>
<td>Civic</td>
<td>33</td>
</tr>
<tr>
<td>Pilot</td>
<td>33</td>
</tr>
<tr>
<td>Silverado</td>
<td>26,5</td>
</tr>
<tr>
<td>Equinox</td>
<td>33,1</td>
</tr>
</tbody>
</table>

Peak Tibia Acceleration (g)

<table>
<thead>
<tr>
<th>Car</th>
<th>Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passat</td>
<td>307</td>
</tr>
<tr>
<td>Miata</td>
<td>402</td>
</tr>
<tr>
<td>Civic</td>
<td>326</td>
</tr>
<tr>
<td>Pilot</td>
<td>401</td>
</tr>
<tr>
<td>Silverado</td>
<td>353</td>
</tr>
<tr>
<td>Equinox</td>
<td>183</td>
</tr>
</tbody>
</table>

Performed under GTR conditions with legform 25 mm above ground reference level
Flex-GT Test Results

Peak Tibia 1 Moment (Nm)
- Passat: 329.6
- Miata: 395.2
- Civic: 383.1
- Pilot: 417.6
- Silverado: 332.9
- Equinox: 382.6

Peak ACL Elongation (mm)
- Passat: 12.7
- Miata: 14.4
- Civic: 1.9
- Pilot: 2.3
- Silverado: 8.4
- Equinox: 22.8

Peak MCL Elongation (mm)
- Passat: 42.5
- Miata: 31.6
- Civic: 36.6
- Pilot: 35.3
- Silverado: 23.5
- Equinox: 35.7

Peak PCL Elongation (mm)
- Passat: 8.5
- Miata: 9.4
- Civic: 10.2
- Pilot: 8.8
- Silverado: 14.4
- Equinox: 9.0

Performed under GTR conditions with legform 25 mm above ground reference level
Flex-GTR Test Results

Peak Tibia 1 Moment (Nm)

- Passat: 428.36
- Miata: 460.48
- Civic: 474.6
- Pilot: 402.04
- Silverado: 332.61
- Equinox: 377.5

Peak MCL Elongation (mm)

- Passat: 28.23
- Miata: 24.14
- Civic: 26.99
- Pilot: 32.05
- Silverado: 22.28
- Equinox: 34.37

Peak PCL Elongation (mm)

- Passat: 7.91
- Miata: 6.36
- Civic: 7.15
- Pilot: 7.05
- Silverado: 5.61
- Equinox: 8.36

Performed under GTR conditions with legform 75 mm above ground reference level
Comparison of Results
TRL vs GTR
Comparison of Results – TRL vs Flex-GTR

Fracture Measures

- TRL - Tibia Acceleration
- Flex-GTR - Max Tibia Bend Moment

Bending Injury Measures

- TRL - Knee Bending Angle
- Flex-GTR - MCL Elongation

Shear Injury Measures

- TRL - Knee Shear Displacement
- Flex-GTR - Max ACL/PCL Elongation
Comparison of Results – TRL vs Flex-GTR

Fracture Measures

Bending Injury Measures

Shear Injury Measures
Summary of Findings

• The Flex-GTR measures lower values than the TRL legform

• The current Flex-GTR seems to be able to distinguish differences in relatively aggressive vehicle bumper designs better than the previous version
Sensitivity

- Testing with a previous version of the Flex-GTR legform showed an inability of the legform to distinguish among vehicles that performed poorly
 - Measurements reached a limit (Mallory, 2010)

- Improvement in the current series of tests may be due to changes in Flex-GTR legform
 - Cable stop gap increase
 - Femur: 8 mm → 9.1 mm
 - Tibia: 9 mm → 10.3 mm

Three additional tests performed on the centers of the three passenger cars
Comparison of Old and New Flex-GTR Data – Center Impacts

Fracture Measures

Bending Injury Measures

Shear Injury Measures

- Flex-GTR (New) - Max Tibia Bend Moment
- Flex-GTR (Old) - Max Tibia Bend Moment

- Flex-GTR (New) - MCL Elongation
- Flex-GTR (Old) - MCL Elongation

- Flex-GTR (New) - Max ACL/PCL Elongation
- Flex-GTR (Old) - Max ACL/PCL Elongation
Summary of Findings

- The Flex-GTR measures lower values than the TRL legform.

- The current Flex-GTR seems to be able to distinguish differences in relatively aggressive vehicle bumper designs better than the previous version.
 - Topping out is not a concern with the current Flex-GTR.

- Flex-GTR repeatability was not directly evaluated, but
 - Silverado Flex-GTR tests 1001 and 1002 showed similar numbers at the same impact location, which is promising.
Flex-GTR Repeatability – Chevy Silverado

<table>
<thead>
<tr>
<th>Injury Measurement</th>
<th>Injury Reference Value (FlexTEG)</th>
<th>Chevrolet Silverado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact Location</td>
<td>Center</td>
<td>GTR (1001)</td>
</tr>
<tr>
<td>Femur Moment (Nm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur 3 (Upper)</td>
<td></td>
<td>73.67</td>
</tr>
<tr>
<td>Femur 2 (Middle)</td>
<td></td>
<td>139.48</td>
</tr>
<tr>
<td>Femur 1 (Lower)</td>
<td></td>
<td>252.05</td>
</tr>
<tr>
<td>Tibia Moment (Nm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibia 1 (Upper)</td>
<td>340 Nm (380 Nm)</td>
<td>332.73</td>
</tr>
<tr>
<td>Tibia 2 (Mid Upper)</td>
<td></td>
<td>311.07</td>
</tr>
<tr>
<td>Tibia 3 (Mid Lower)</td>
<td></td>
<td>233.53</td>
</tr>
<tr>
<td>Tibia 4 (Lower)</td>
<td></td>
<td>110.52</td>
</tr>
<tr>
<td>MCL Elongation (mm)</td>
<td>22 mm</td>
<td>--</td>
</tr>
<tr>
<td>ACL Elongation (mm)</td>
<td>13 mm</td>
<td>8</td>
</tr>
<tr>
<td>PCL Elongation (mm)</td>
<td>13 mm</td>
<td>5.41</td>
</tr>
<tr>
<td>LCL Elongation (mm)</td>
<td>--*</td>
<td>-4.16</td>
</tr>
<tr>
<td>Tibia Acceleration (g)</td>
<td>--*</td>
<td>-59.21</td>
</tr>
<tr>
<td>Velocity (m/s)</td>
<td>--*</td>
<td>11.055</td>
</tr>
</tbody>
</table>
Summary of Findings

• The Flex-GTR measures lower values than the TRL legform

• The current Flex-GTR seems to be able to distinguish differences in relatively aggressive vehicle bumper designs better than the previous version
 • Topping out is not a concern with the current Flex-GTR

• Flex-GTR repeatability was not directly evaluated, but
 • Silverado Flex-GTR tests 1001 and 1002 showed similar numbers at the same impact location, which is promising

• The Flex-GTR was observed to be durable
 • Survived US vehicles
 • A majority of the issues that were observed were minor and repairable
Pinching of wires between blue tab and metal knee condyle

Wear and tear of plastic sheath around knee tension cables

Pushed Surface of the Legform
Tibia and Femur knee blocks are rotated/not flush with each other.
Observations and Durability Assessment (Flex-GTR)

Misalignment of the knee after Passat and Miata impacts

Tear in the neoprene skin and scratches on the femur knee block
Issues with Flex-GTR

• Needed to modify the legform in order for its flight to be within GTR tolerances for forward pitch (specific to the VRTC launch system)
 • Removed black protective end caps

• Konosu-san (JARI) informed us that they cut out notches at the top and bottom of the launch plate to accommodate for the end caps

• Femur strain gauge #2 (middle gauge)
 • Broken gauge/wire
 • Still being investigated
Summary of Findings

• Durability:
 • The Flex-GTR seems to be able to distinguish differences in relatively aggressive vehicle bumper designs better than the previous version
 • Flex-GTR repeatability was not directly evaluated, but
 • Silverado Flex-GTR tests 1001 and 1002 showed similar numbers at the same impact location, which is promising
 • The Flex-GTR was observed to be durable
 • Survived US vehicles
 • A majority of the issues that were observed were minor and repairable
Summary of Findings

- Injury criteria:
 - The Flex-GTR measures lower values than the TRL legform
 - Injury results were not consistent with previous testing:
 - Previous study has shown that it’s rare to injure the ACL or PCL without injuring MCL. However, in the VW and Honda Civic tests, we observed ACL elongation that exceeded the injury criteria before the MCL exceeding injury criterion.
 - The findings raise concerns on whether the Flex GTR is properly modeling the impact or that the injury criteria are appropriate
Conclusion

- Flex-GTR legform is found to be durable
- Additional research and testing needed to address the injury criteria concerns
- Currently, more world fleet data is needed
- Different evaluation criteria may result in different countermeasures (design and cost benefit)
Thank you