History of Development of the Flexible Pedestrian Legform Impactor (Flex-PLI)

November 3rd, 2011
Japan
Contents

1. Background
2. History of Flex-PLI Development (Overview)
1. Back ground
1. Background

Pedestrian Injured Body Regions

(USA, Germany, Japan, and Australia: All Age Groups: AIS 2-6)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>32.7%</td>
<td>29.9%</td>
<td>28.9%</td>
<td>39.3%</td>
<td>31.4%</td>
</tr>
<tr>
<td>Face</td>
<td>3.7%</td>
<td>5.2%</td>
<td>2.2%</td>
<td>3.7%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Neck</td>
<td>0.0%</td>
<td>1.7%</td>
<td>4.7%</td>
<td>3.1%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Chest</td>
<td>9.4%</td>
<td>11.7%</td>
<td>8.6%</td>
<td>10.4%</td>
<td>10.3%</td>
</tr>
<tr>
<td>Abdomen</td>
<td>7.7%</td>
<td>3.4%</td>
<td>4.7%</td>
<td>4.9%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Pelvis</td>
<td>5.3%</td>
<td>7.9%</td>
<td>4.4%</td>
<td>4.9%</td>
<td>6.3%</td>
</tr>
<tr>
<td>Arms</td>
<td>7.9%</td>
<td>8.2%</td>
<td>9.2%</td>
<td>8.0%</td>
<td>8.2%</td>
</tr>
<tr>
<td>Lower Limbs</td>
<td>33.3%</td>
<td>31.6%</td>
<td>37.2%</td>
<td>25.8%</td>
<td>32.6%</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.0%</td>
<td>0.4%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.2%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

source: IHRA/PS WG 2001 report

Head Protection Tests

Lower Limb Protection Test
1. Background, contd.

Lower Limb Injured Parts and Contact Locations -
(USA, Germany, Japan, and Australia : Pedestrian Lower Limb : AIS 2-6)

<table>
<thead>
<tr>
<th>Contact Location</th>
<th>Overall</th>
<th>Thigh</th>
<th>Knee</th>
<th>Leg</th>
<th>Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Bumper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top surface of bonnet/wing</td>
<td>2.1%</td>
<td>0.3%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Leading edge of bonnet/ wing</td>
<td>4.7%</td>
<td>3.3%</td>
<td>0.5%</td>
<td>2.4%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Windscreen glass</td>
<td>0.1%</td>
<td></td>
<td>0.1%</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>Windscreen frame/ A pillars</td>
<td>0.5%</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Panel</td>
<td>0.9%</td>
<td>0.9%</td>
<td>1.0%</td>
<td>3.2%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Others</td>
<td>0.6%</td>
<td>0.4%</td>
<td>0.5%</td>
<td>2.6%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>10.5%</td>
<td>8.0%</td>
<td>9.1%</td>
<td>52.0%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

AIS 2-6
USA, Japan, Europe, and Australia

Source: IHRA/PS WG 2001 report

<table>
<thead>
<tr>
<th>Contact Location</th>
<th>Overall</th>
<th>Thigh</th>
<th>Knee</th>
<th>Leg</th>
<th>Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Bumper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top surface of bonnet/wing</td>
<td>0.2%</td>
<td>0.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leading edge of bonnet/ wing</td>
<td>0.4%</td>
<td>0.7%</td>
<td>0.1%</td>
<td>0.6%</td>
<td></td>
</tr>
<tr>
<td>Windscreen glass</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windscreen frame/ A pillars</td>
<td>0.5%</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Panel</td>
<td>0.9%</td>
<td>0.5%</td>
<td>0.1%</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>0.9%</td>
<td>0.5%</td>
<td>1.3%</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>Sub-Total</td>
<td>1.9%</td>
<td>4.8%</td>
<td>0.9%</td>
<td>7.0%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

Source: IHRA/PS WG 2001 report
1. Background, contd.

EEVC Pedestrian Lower Legform Impactor

Main Concerns: (1) **Low biofidelity** and (2) **Insufficient Measurement Items**

Structure
- **Main unit**
 - Femur (Rigid)
 - Low Biofidelity
 - Tibia (Rigid)
 - Low Biofidelity
- Knee (Hard)
 - Low Biofidelity

Exterior
- Flesh
 - Disposable Flesh Foam
 - Sensitive to Temperature and Humidity

Instrumentation
- Real-world Accident Analysis
 - Otte et al, 2007
 - Knee center
 - Knee Shearing Displacement
 - Knee Bending Angle
 - Upper Tibia Acceleration

- Injury Assessment Items
- Tibia Middle/Lower
 - No measurement Items
2. History of Flex-PLI Development (Overview)
The Japan Automobile Research Institute (JARI) and the Japan Automobile Manufacturers Association, Inc. (JAMA) initiated the development regarding a biofidelic flexible pedestrian legform impactor (Flex-PLI) from 2001. In 2002, its first version, Flex-PLI 2002, was made. The impactor has Flexible Long bones (Femur/Tibia) and knee ligament restraint system like human ones. Besides, the impactor has an capability to measure bending moment at multiple locations at Tibia and Femur.
2. History of Flex-PLI Development (Overview), contd.

- After the Flex-PLI 2002 development, **several improvements were applied**.
- GRSP/Pedestrian Safety Informal Working Group (IG-PS WG) interested in the capability of Flex-PLI, then, **Flex-PLI technical Evaluation Group (Flex-TEG) were settled** in 2005 under the GRSP/IG-PS WG to **evaluate the Flex-PLI capabilities as a regulatory tool** from Flex-G.
- Finally, the prototype of **final version of Flex-PLI (Flex-GTR) were developed in 2009**.
- Flex-TEG members were evaluated Flex-GTR capabilities, then they **approved the Flex-GTR capabilities** in 2010.
- After that, Flex-TEG chair country, Japan, **submitted amendments regarding gtr and ECE to the GRSP** using the Flex-GTR specifications, etc..
Specifications of Flex-GTR-prototype

Main Achievements: (1) **High biofidelity** and (2) **Multiple Measurement Items**

Structure
- **Femur (Flexible)**
 - High Biofidelity
- **Tibia (Flexible)**
 - High Biofidelity

Exterior
- **Flesh**
 - Reusable
 - Low Sensitive to Temperature and Humidity

Instrumentation
- Injury Assessment Items

Real-world Accident Analysis
Otte et al, 2007

Synthetic Rubber

Main unit
- Femur-1 BM
- Femur-2 BM
- Femur-3 BM
- Femiur-4 BM
- Tibia-1 BM
- Tibia-2 BM
- Tibia-3 BM
- Tibia-4 BM

BM: Bending Moment

Knee (Ligaments restraint system)
- **MCL**
- **ACL**
- **PCL**
- **LCL**

Specifications of Flex-GTR-prototype

- **Femur** (Flexible)
 - High Biofidelity

- **Tibia** (Flexible)
 - High Biofidelity

- **Knee**
 - MCL: Medial Collateral Ligament
 - ACL: Anterior Cruciate Ligament
 - PCL: Posterior Cruciate Ligament
 - LCL: Lateral Collateral Ligament

- **BM: Bending Moment**

- **Injury Assessment Items**

- **Flesh**
 - Reusable
 - Low Sensitive to Temperature and Humidity

- **Main Achievements**
 - (1) **High biofidelity**
 - (2) **Multiple Measurement Items**
2. History of Flex-PLI Development (Overview), contd.

• The Flex-GTR had been developed based on the discussions with the Flex-TEG members.
• Detailed information on discussions and achievements of the Flex-TEG regarding
 • Biofidelity
 • Performance/Injury Criteria
 • Benefit
 • Durability
 • Reproducibility and Repeatability
 • Vehicle Countermeasures
of Flex-PLI are provided by another document.
Thank you for your attention!