Competent and Careful human driver performance model

Nov 17, 2020

Transmitted by experts of Japan

Agenda

- Background
- Basis for each parameter

1. Risk perceive situation What is 0.375m?
2. Human delay

What are 0.72 m and 0.75 sec
3. Max Decerebration G and

What is $0.774 G / 0.6 s e c ~ w / A E B$

BACKGROUND

Accident Rate Caused by Human Factors of Driver (Highway)

- 97% of the accidents were related to the human factors of driver. (of which 60 \% was due to delay in perception caused by caused by lack of attentiveness)
- Most of the accidents can be prevented if the driver's level of attentiveness is high.
- Data collection criteria:

Accidents occurred on highways in Japan in which the primary responsible party was a vehicle (automobile/motorcycle) (2017)

Driver Model Structure

BASIS FOR EACH PARAMETER

Risk Perceived Boundary by Lateral Movement

When the other vehicle is wandering within its own lane, it is unlikely that the egovehicle perceives the possibility of cut-in

Define the cut-in perceived boundary based on the lateral movement range of other vehicle wandering within its own lane

Risk Perceived Boundary by Longitudinal Distance

Based on the UNR guidelines on warning signals, define
Time To Collision (TTC) of 2.0 seconds as the boundary of emergency braking area

(a) Low-level: driver prepares action or decision within 10 seconds to 2 minutes; may escalate to a higher level if not acted upon;
(b) Mid-level: requires action or decision within around 2 to 10 seconds; may escalate to high-level warning if not acted upon;
(c) High-level: warning requires the driver to take immediate action or decision (0 to around 2 seconds) to avoid a potential crash that could result in serious injuries or fatalities.

Economic Commission for Europe

Inland Transport Commititec
Word F F oun for Harmonization
Non
Reports of the

Adaministratrive Committee of the 1058 Agreement on its
forty -iggtit session
$\underset{\substack{\text { Executive Committe of the } 1998 \\ \text { second sesision }}}{\text { Agreement on its thirty. }}$
Admininstrative Committee of the 1997 Agreement on its
eizhtit sesion Addendum

「ECE/TRANS/WP.29/1091/Add. 1 Annex III Guidelines on establishing requirements for high-priority warning signals」

2. Human reaction Delay

Braking Delay

Braking delay 0.75 sec is the value commonly used to calculate the stopping distance among the police and the courts in Japan.

Stopping Distance against velocity

Reference: https://www.pref.niigata.Ig.jp/uploaded/attachment/226116.pdf
※This value has been in use since about 1967.

Analysis of Risk Perception Time by DS Test

Analyze DS test data of driver reaction time against cut-in by other vehicle

- Measure risk perception time (time to react and avoid) of drivers against cut-in by other vehicle with 11 test participants

DS test summary

Parameter	Value
Lane width	3.5 m
Ego-vehicle target velocity V_{e}	$100 \mathrm{~km} / \mathrm{h}$
Platoon velocity traveling in parallel forward V_{o}	$70 \mathrm{~km} / \mathrm{h}$
Max. lateral velocity of cut-in vehicle V_{oL}	$1.8 \mathrm{~m} / \mathrm{s}$
TTC at cut-in start	3.0 s

Test group details

No. of participants	Description	Composition of participants
11	Having 5 years or more driving experience on regular basis, drives on highway at least once a month	-6 Males, 5 Females - Avg. age: 38.7

Risk Perception Time Against Cut-in by Other Vehicle

Average time of risk perception was 0.8 sec in the first trial, and 0.4 sec in the second and subsequent trials

Total delay of driver's reaction to cut-in by other vehicle

Risk Perception Time Against Cut-in by Other Vehicle

Average time of risk perception was 0.8 sec in the first trial, and 0.4 sec in the second and subsequent trials

Trial			Accelerator release time	Foot transfer time	Time from risk perception to maneuver	Subtract $0.75 \mathrm{sec}$
			(1)	(2)	initiation	
1st	1-1	1	1.40	0.47	0.75	1.12
	1-2	1	1.18	0.42		0.85
	1-3	1	1.12	0.20		0.57
	1-4	1	1.53	0.17		0.95
2nd and subseq.	2-1	2	1.15	0.32	0.75	0.72
	2-2	2	1.13	0.20		0.58
	2-3	2	0.77	0.17		0.18
	2-4	2	0.90	0.23		0.38
1st		Avg.	1.27	0.29		0.87
2nd and subseq.		Avg.	0.96	0.26		0.47
Ratio			0.75	0.92		0.53

Time to perceive risk after other vehicle started to cut-in

- $1^{\text {st }}$ trial: Approx. 0.9 sec .
$-2^{\text {nd }}$ and subseq. trials: Approx. 0.5 sec .
※The collected data are results of same TTC and brake avoidance with the same cut-in timing.

Driver Reaction Time Against Cut-in

In $2^{\text {nd }}$ trial driver has learned the protocol in $1^{\text {st }}$ trial and will expect the cut in just after starting the lateral movement of the vehicle in adjacent lane.

Risk Perceived Boundary

3. Deceleration degree and Max. G-force

Deceleration Degree and Max. G-force

Trained drivers' Max. deceleration G-force: 0.774G

=> Define the driver model with skilled drivers

 who have driving skills superior to regular drivers[JP]
A study example of emergency braking characteristics of driving trainees in Japan

- Regular drivers : 0.689 G
- Trained drivers* : 0.774 G
*Trained drivers: Trainees of Japan Safe Driving Center (JSDC) Central Training Academy for Safe Driving

(Makisita et al., 2001) *Dry road surface
- 183 Trained drivers, (JP, 21~65years old)

[US]

Near-Crash median (0.74 G)
Incident median (0.5 G)

Figure 4. Peak deceleration categories, conflicts with a decelerating lead vehicle (near-crashes \& incidents). (NHTSA, 2007)

```
-100-car naturalistic driving study
-Age group: 18-20(15%), 21-24(20%),
25-34(17%), 35-44(18%), 45-54(18%),
55+(12%)
```


C2-b Achieving Time to max G

Trained drivers' time to reach Max. deceleration: 0.6 second

■ Acceleration waveforms of trained drivers

- 183 Trained drivers, (JP, 21~65years old)

Achieved steady deceleration state of 0.9 G within 0.6 second
(Based on the graph)

Competent and Careful human driver performance model

