

Detection of liquid electrolyte leakage by signalling the presence of Li ions

Georgios Karaiskakis Ricardo da Costa Barata Natalia Lebedeva

April 2021

Detection of liquid electrolyte leakage by signalling the presence of Li ions

Motivation

Experimental results - 8-Hydroxyquinoline

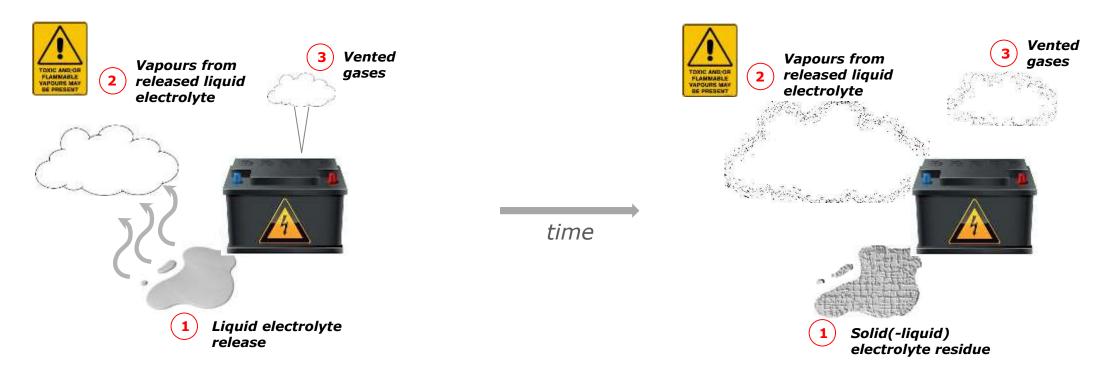
Future Work

Motivation

EVS GTR:

"...visual inspection without disassembling any part of the Tested-Device" is adopted in Phase 1 as a method for verification of the occurrence of electrolyte leakage and venting.

JRC concerns:

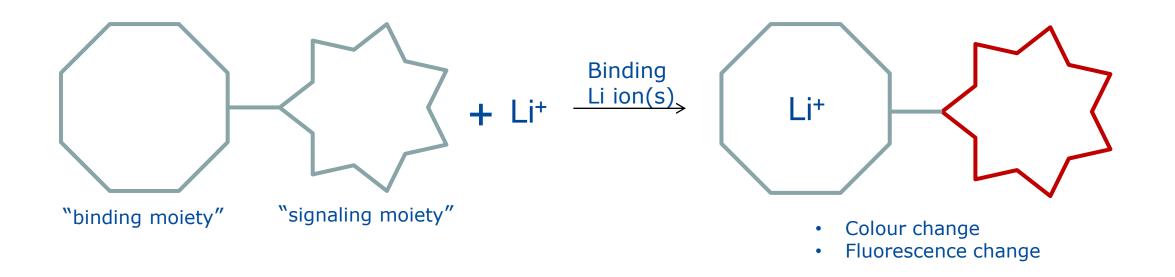

- Due to <u>high volatility</u> of some electrolyte components and <u>limited release volume</u>, electrolyte leakage and venting may not always be easily detectable, while potentially creating hazardous environment.
- Special measures may be required to ensure safety of inspecting personnel.
- Release of other substances, e.g. coolant, is currently treated equally to release of electrolyte.

6.1.6.2.6. Electrolyte leakage.

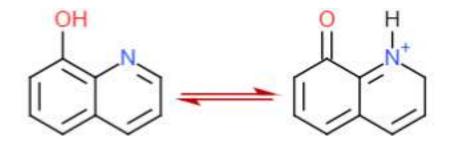
An appropriate coating, if necessary, may be applied to the physical protection (casing) in order to confirm if there is any electrolyte leakage from the REESS resulting from the test. Unless the manufacturer provides a means to differentiate between the leakage of different liquids, all liquid leakage shall be considered as the electrolyte.

Introduction

Possible approaches for detection of electrolyte release


1 Detection of Li-ion presence

2+ 3 Gas detection


8-Hydroxyquinoline (8-HQ)

Chemosensor – molecule able to simultaneously bind and signal the presence of other species^a.

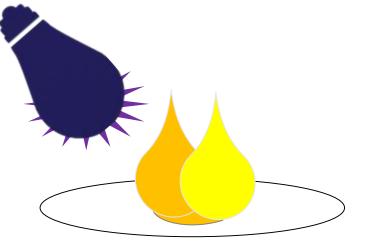
8-Hydroxyquinoline (8-HQ)

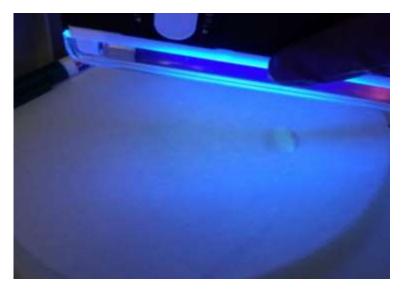


Second most important chelating agent, after EDTA.^b

Bifunctional H-donor (-OH) and H-acceptor (N).

Bidentate ligand capable of complexing various metal ions forming a five-membered inner complex ring, by H replacement.

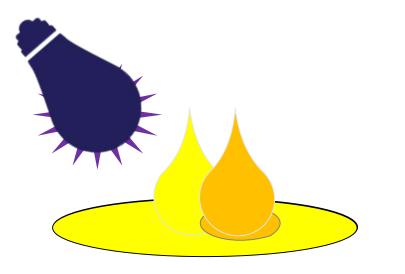

Fluoresces with **greenish** light upon UV excitation... ...but not with sodium (Na⁺) or potassium (K⁺)!!!^c



Experimental Results: 8-Hydroxyquinoline (8-HQ)

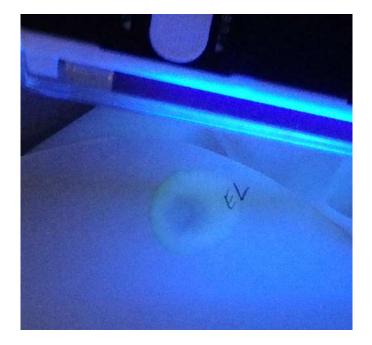
Does it work with electrolyte?

Droplet of electrolyte was placed on filter paper, then droplet of 8-HQ added to the same spot



After ca. 5 min green fluorescence was visible upon exposure of the spot to UV light

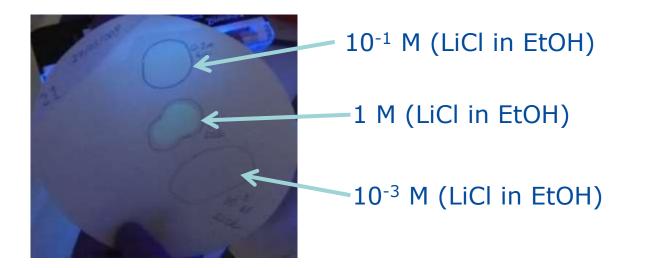
Electrolyte 8-HQ solution in Ethanol UV-Light



Experimental Results: 8-Hydroxyquinoline

Filter paper was pre-treated with 8-HQ and allowed to dry at RT overnight, then droplet of electrolyte was added to the 8-HQ pre-treated paper

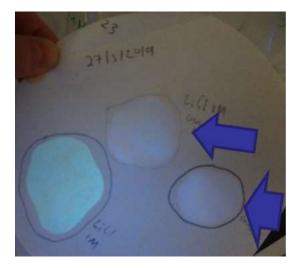
Electrolyte 8-HQ solution in Ethanol UV-Light


After ca. 5 min green fluorescence was visible upon exposure of the spot to UV light

Experimental Results: 8-HQ - sensitivity

Fluorescence is Li-ion concentration dependent.

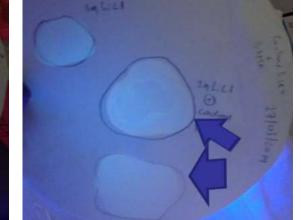
10⁻³ M not visible!


In case of failure, the mixing of electrolyte (few ml, typically 1M) and coolant (up to 10 l), can lead to Li-ion concentrations in the 10⁻⁴ M to 10⁻³ M range.

Experimental Results: 8-HQ - interferences

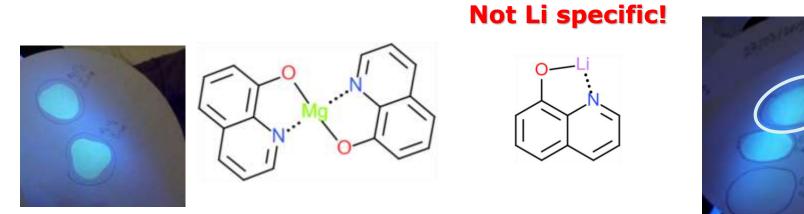
From EVS GTR 6.1.6.2.6.

"Unless the manufacturer provides a means to differentiate between the leakage of different liquids, <u>all liquid leakage shall be considered</u> <u>as the electrolyte</u>."



1 M LiCl (left); Coolant A(right); Coolant A +1M LiCl (middle)

1 M LiCl (left); Coolant A (right); Coolant A + 1M LiCl, after 2 months


1 M LiCl (left); Coolant B (right); Coolant B + 1M LiCl

1 M LiCl (left); Coolant B (right); Coolant B + 1M LiCl, after 2 months

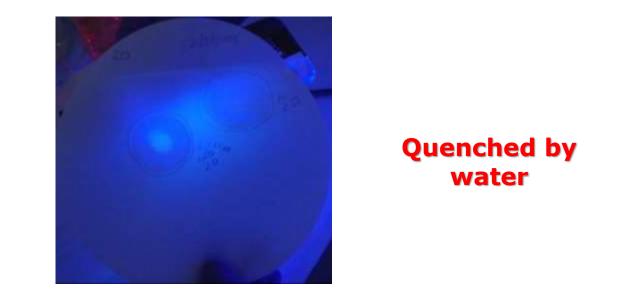
Coolants are fluorescent!

Experimental Results: 8-HQ - specificity

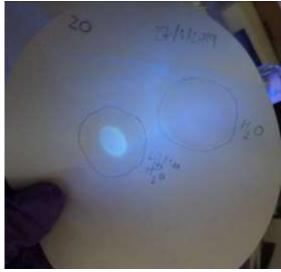
Experimental result: 0,1M MgCl₂ in EtOH vs 1M LiCl in EtOH.

Experimental result: 0,1M AICI3 in EtOH vs 1M LiCl in EtOH.

BUT from our ICP-MS results we know coolants do not contain a significant amount of interfering cations


Experimental Results: 8-HQ – Coolant Composition

Element	Concentration in ppm	
	Coolant A	Coolant B
AI	1.3	1.3
Ba	0.039	0.028
Са	20	31
Fe	0.24	0.094
К	310	360
Li	0.26	< 0.08
Mg	18	22
Mn	0.059	0.0099
Мо	0.14	0.077
Na	3800	4400
Ti	0.026	< 0.02
Zn	0.073	0.068

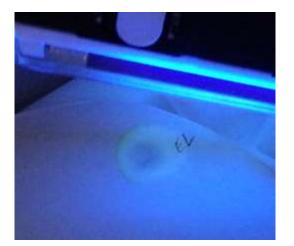

1M [Li⁺] = 6941 ppm

Experimental Results: 8-HQ - interferences

Fluorescence of a 8-HQ-treated filter paper after addition of water (right spot) and water followed by addition of 1 M LiCI to a 8-HQ-treated filter paper (left spot) upon illumination with UV light.

Same filter paper 2 months after the test. Drying of the paper increases the fluorescence of the LiCl spot.

Experimental Results: 8-HQ - Summary

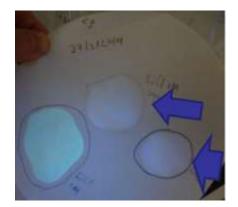

Proof of concept:

- use of 8-HQ can help detecting Li-ion battery electrolyte release
- a coating based on 8-HQ treated filter paper was demonstrated

Low sensitivity

EXPERIMENTAL CONDITIONS

Detector: human eye. UV Source: handheld dispersive lamp. Sample holder: coating around the pack.



Quenched by water

Not Li specific

Coolants are fluorescent

Future Work - Selective Li(-i)on Hunters

Future Work

8-Hydroxyquinoline	Ideal Chemosensor	
Not Li-ion selective	Li-ion selective	
Fluorescence indistiguishable from coolants	Ideally change of visible colour	
Low sensitivity under experimental conditions	High sensitivity under experimental conditions	
Quenched by water	Not solvent or pH sensitive	
Commercially available	Commercially available	

Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

