

Challenges and Approaches for the Correlation of virtual and real testing

Dr. Tobias Dueser (AVL, IAMTS)

Head of ADAS/AD Virtual Testing Solutions at AVL

Workgroup Lead International Alliance for Mobility Testing and Standardization

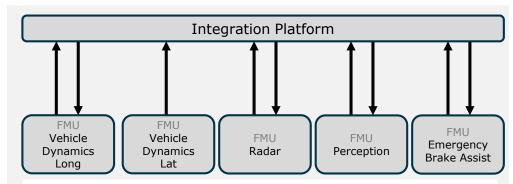
Describe the main challenges correlating virtual and real testing / applying virtual testing methods for ADAS/AD

Show examples and existing approaches

Discuss the key topics model, tool and toolchain

The virtual vehicle

The virtual vehicle in a virtual testing toolchain


- Steering model (lane keeping and path driving)
- Brake model (including high dynamics; e.g., for emergency braking)
- ABS controller (in case of dynamic braking)
- Suspension model (movement of chassis and influences on field of view of sensors, special use case truck with trailer)
- Powertrain model and powertrain management (acceleration capabilities; e.g., for overtaking or highway entrance)
- E.g. Virtual lanes (relevant properties, reflections, interruptions, color)
- **Sensor models** (e.g. camera model with relevant effects which can be also simulated in the virtual environment)

Source: IAMTS/AVL

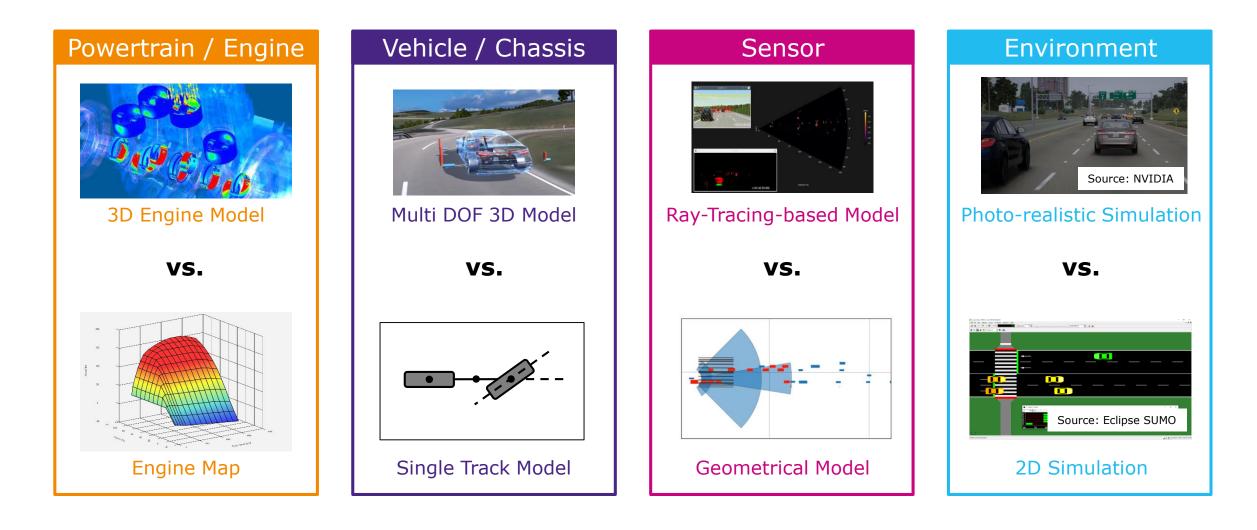
Conclusion 1:

/ 4

Virtual Testing in ADAS/AD means setting up a virtual vehicle with different components out of different domains in different tools...

Source: simplified based on Marius Feilhauer: "Simulationsgestützte Absicherung von Fahrerassistenzsystemen", Dissertation, Stuttgart 2018

Simulated ADS Process	Simulation Type	Description	Example Software Applications	
1a, 2	Sensor Fusion	Represents applications that emulate sensor data when an environment is presented to them. The sensor data could be developed either in the form of vector graphics or as a sensor point cloud.	MATLAB ADS Toolbox	
1b	V2V/V2I Communication	Represents applications that emulate communications interaction between vehicles and other infrastructure elements so that parameters such as latency and error rates can be incorporated into data packets.	Riverside Modeler, OMNET, etc.	
3	Simulate World Models	Represents applications that emulate the world model, either based on sensor data or from a known environment.	Cognata, MATLAB ADS	
5	Vehicle Dynamics	Represents applications that emulate the physical characteristics of a vehicle when subject to path-planning and navigation decisions.	Simulink, CarSim, etc.	Source: NHTS/ A Framework f Automated
Process	Transportation Network Modeling	Represents applications that can emulate V2V, V2I, and vehicle-to-pedestrian interaction with respect to the navigation of each of the elements in a transportation network.	Vissim, Aimsun, TransModeler, etc.	Driving Systen Testable Cases and Scenarios


Public

Modelling and Modelling Requirements

Model Fidelity Levels – What is required and how to describe it?

Public

Fidelity Levels for Subsystem Models Example Vehicle Dynamics Lane Keep Assist

General model fidelity levels of a mechanical system:

Model fidelity level	Description
0	None
1	Steady state models
2	Transient models
3	Oscillatory models

Source: ISO/DIS 11010-1 Passenger cars — Simulation model classification — Part 1: Vehicle dynamics

Example (excerpt) for brake system

	Model type	Model description	Description	Effects	Common modelling methods / typical application area	Minimal model input	Minimal model output		
E	BRM 0	no brake pressure modulation							
E	3RM 1	Steady-state	Pressure in wheel brake cylinder, system oriented	Pressure in wheel brake cylinder proportional to master cylinder pressure friction coefficient		n Pressure in wheel brake cylinders			
E	3RM 2.1	Transient	Pressure in wheel brake cylinder, system oriented	Volume flow and pressure due to elasticity in the brake system	Bernoulli , characteristic curves and lines, (Typ1), pV-characteristics; <10 DGLs 1. ORD	Pressure in the maste brake cylinder	r Pressure in wheel brake cylinders		
E	3RM 2.2	Transient with control	Pressure in wheel brake cylinder, system oriented	BRM2.0 with valve and pump actuation	BRM 2.0 with valve current and pump voltage >10 DGLs 1. Ord, 1 DGL 2. Ord.	Pressure in the maste brake cylinder, Valve and pump actuation	r Pressure in wheel brake cylinders, voltage of pump motor		
E	3RM 3.1	Oscillatory with control	Pressure in wheel brake cylinder, system oriented	BRM 2.x with brake pipe dynamics up to 40Hz	BRM2.x with brake pipe dynamics based on acoustic theory	Pressure in the maste brake cylinder, Valve and pump actuation	r Pressure in wheel brake cylinders, voltage of pump motor		

AVL 🗞

17

Fidelity Levels for Subsystem Models Example Vehicle Dynamics Simulation for Lane Keep Assist

Model Class	Fidelity	Details
Vehicle	VHM 2.2	3D Model with rigid bodies incl. wheel bounce
Aerodynamics	AEM 1.2	longitudinal drag forces, front and rear lift forces
Brake	BRM 1.0	Pressure in wheel brake cylinder, system oriented
Powertrain	PTM 1.0	static correlation accelerator pedal to sum of driving forces
Steering	STM 3.1	Elasto-kinematics steering model includes steering ratio, elasticity, mass, inertia, damping and coulomb friction
Suspension	SUM 1.3	kinematic and compliance is stored in table
Tire	TIM 2.1	All forces and moments are calculated with PT1 behavior

Source: joint project focusing on virtual-based homologation of LKAS between:

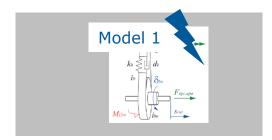
Fidelity Levels for Subsystem Models Example Environment Simulation

What are fidelity levels / model parameters for e.g. street lights:

- Luminous flux
- Luminous intensity
- Luminance
- Light color

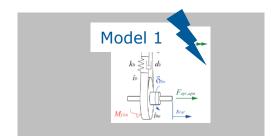
. . .

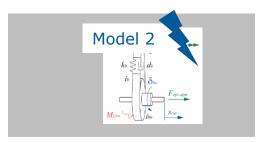
LED flickering effects (as some perception methods evaluate this)

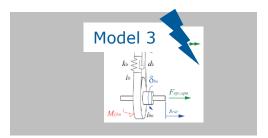

Conclusion 2:

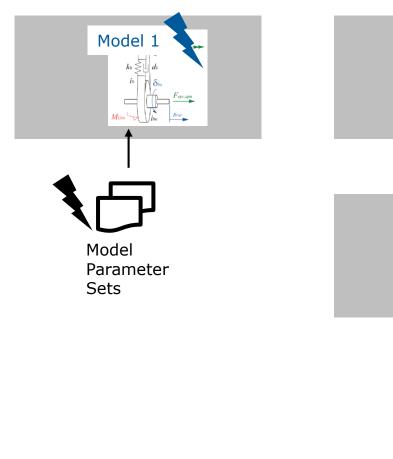
/ 9

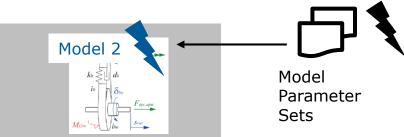
Defined Model Fidelity Levels (also for Sensor and Environmental Models) will help to setup the virtual testing toolchain and to assess it!

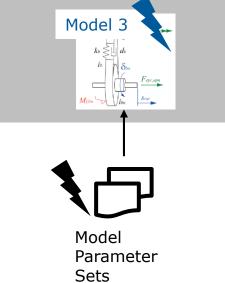


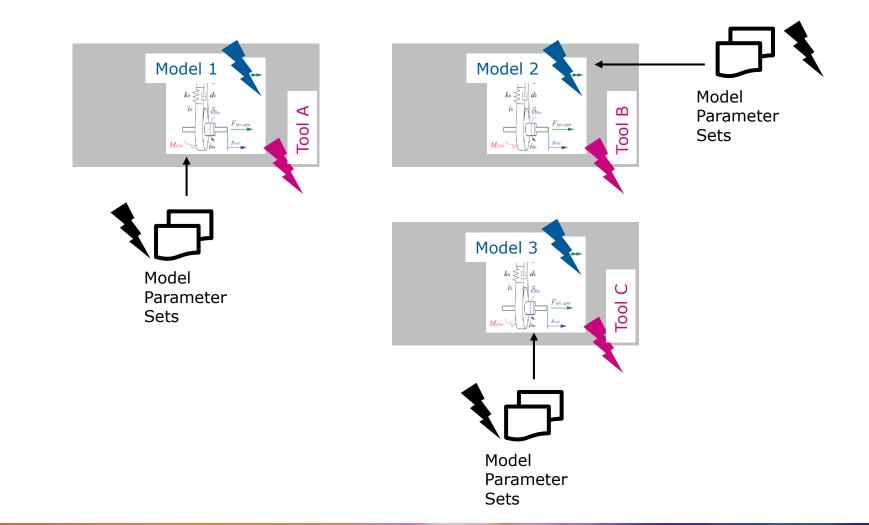

Simulation Toolchain and Virtual Vehicle Integration

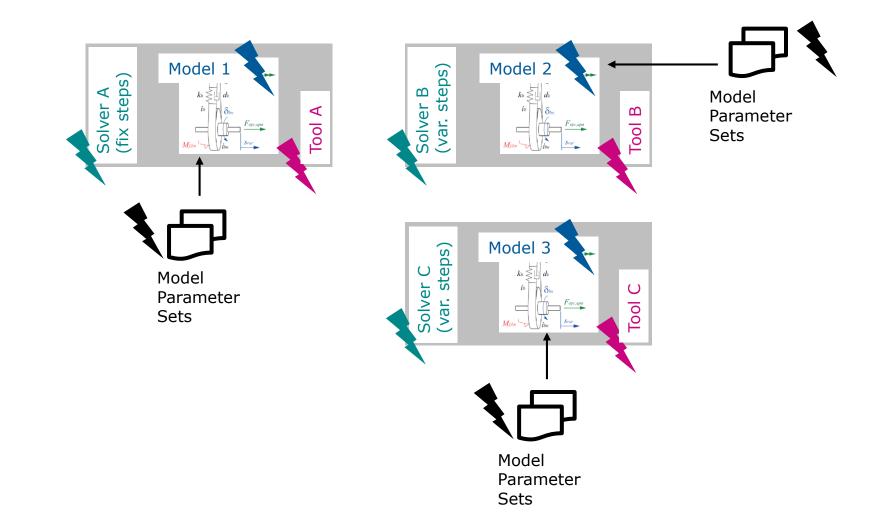


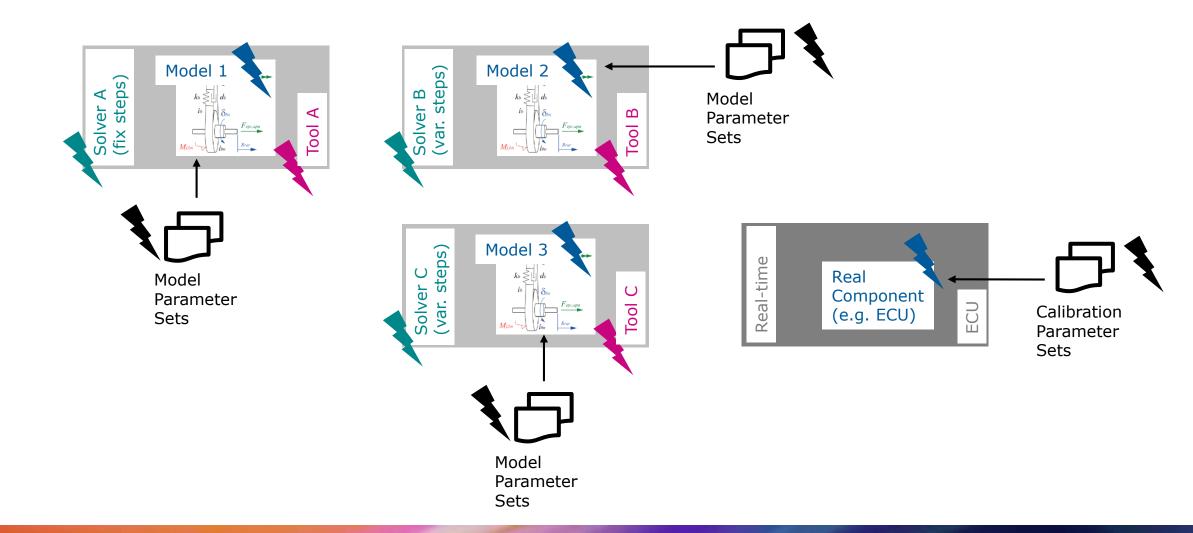

Dr. Tobias Dueser (AVL, IAMTS) | | 17 Februar 2021 | AVL 🗞

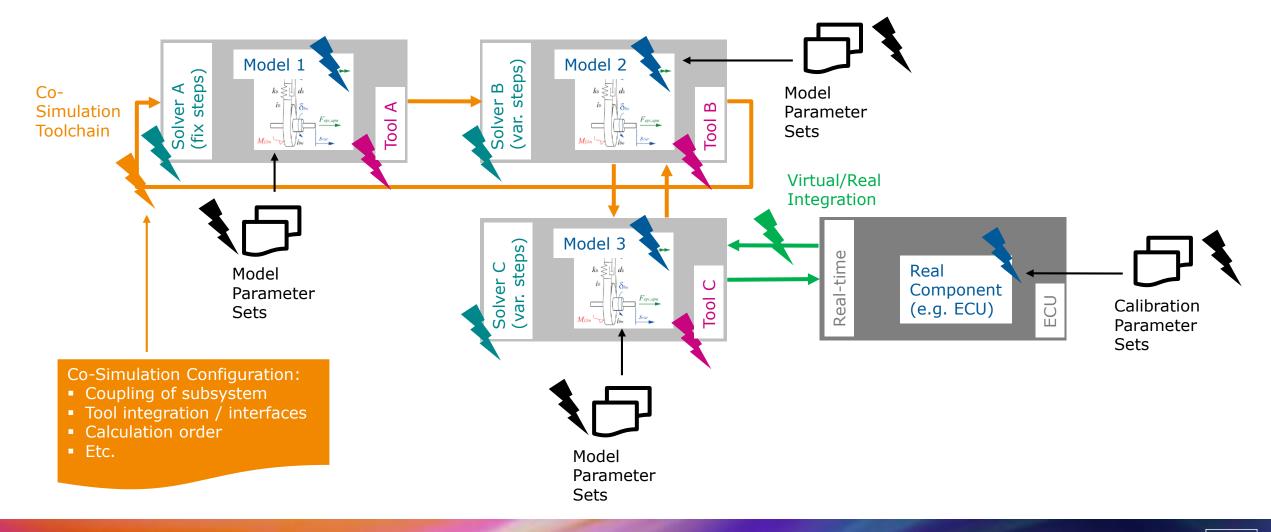






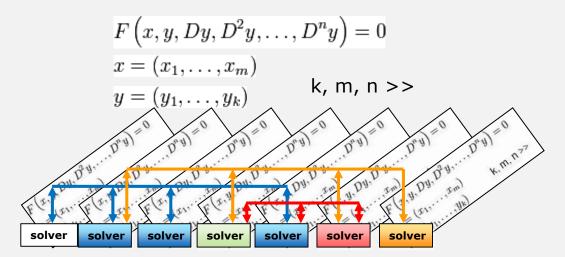






The Co-Simulation Challenge Influence Coupling Error

Requirements and Challenges (Details):


Technical View:

Mathematical View:

- Multi-domain development
- Multi-tool approach
- Multi-vendor
- Dynamic coupling

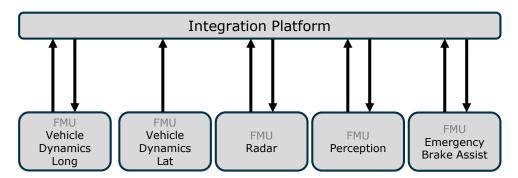
Virtual prototype representation

- Multi-method
- Multi-solver
- Multi-rate
- Dynamic coupling
- Coupling error

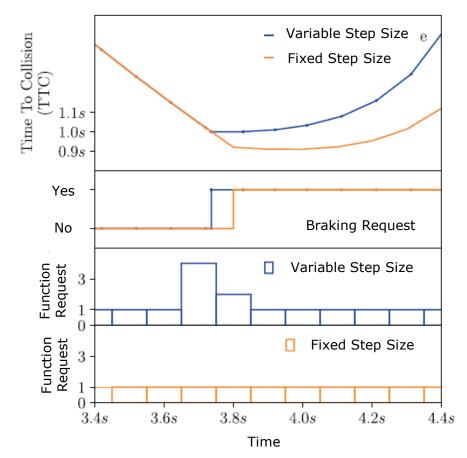
Example:

AEB Scenario:

"Full braking after acceleration to 100 km/h"

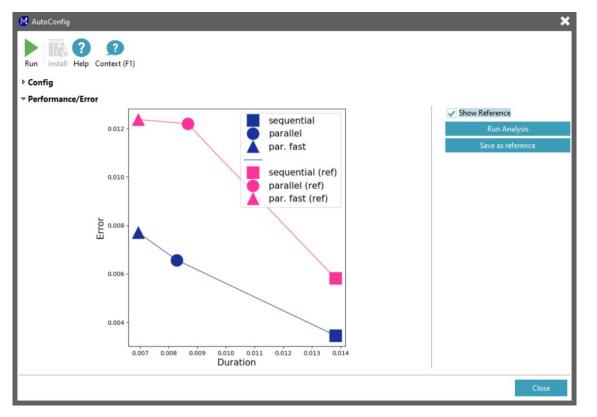

Significantly longer braking distance (~1.9 m) due to coupling error!

Correct (co-)simulation result coupling algorithm



Source: AVL

The Co-Simulation Challenge Influence of Step-Size



Source: simplified based on Marius Feilhauer: "Simulationsgestützte Absicherung von Fahrerassistenzsystemen", Dissertation, Stuttgart 2018

Source: Marius Feilhauer: "Simulationsgestützte Absicherung von Fahrerassistenzsystemen", Dissertation, Stuttgart 2018

Connection between coupling algorithms and step size

Public

/ 20

- Changing step size of one model from 0.03 s (magenta) to 0.01 s (blue)
- Different coupling (parallel, par. fast.) algorithms help to find the best trade off between simulation time and error

Conclusion 3:

...It is not sufficient to validate on "integrated system level" only. ...It is not sufficient to validate each submodel only.

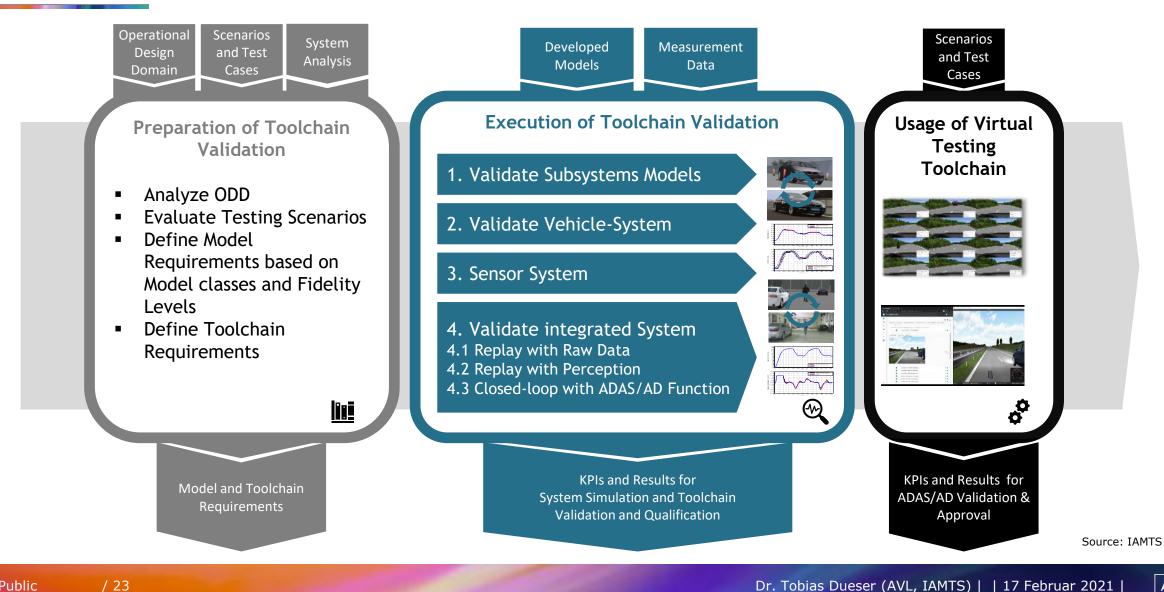
Both must be done to identify failures! Evaluation of Co-Simulation accuracy must be considered!

Determinism in Simulation Tools and Toolchains

Source: https://carla.org/2020/12/22/release-0.9.11/

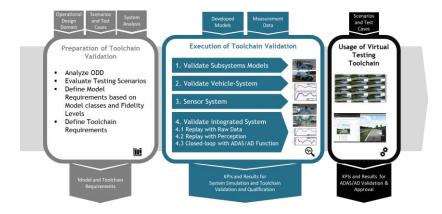
Public

/ 21


Conclusion 4: Determinism must be evaluated (on tool and toolchain level, especially for systems integrating real components)

Validation Process

IAMTS Reference Process for the correlation of the virtual and real world



AVL 🐝

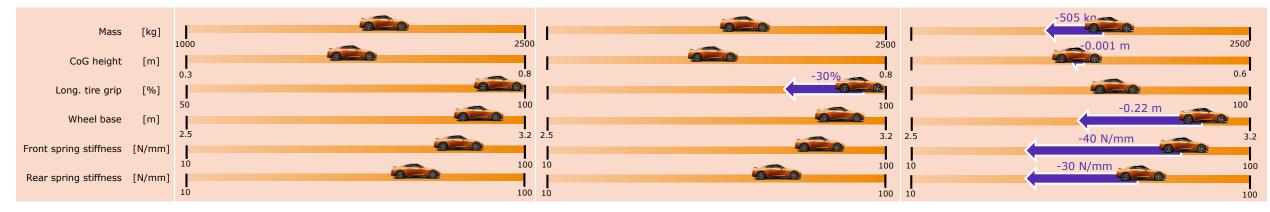
General Remarks VMAD Context

- The process describes a comprehensive approach to correlate the virtual and the real world
- It refers to the REGULATION (EU) 2018/858 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL which already distinguishes between a Validation and an Approval Process
- Because of the different integration steps, it provides a traceable approach to identify problems and deviations

Source: IAMTS

But:

- It is not required to go every time through all steps (e.g. if subsystem models already existing)
- As there are different stages of the model and toolchain integration there are different KPIs on different levels (low level KPIs to assess the validity of subsystem models or high level KPIs to access the validity of the integrated system)
- Applying a correlation process in a regulation needs a tailoring, not every step could be prescribed in a regulation (maybe only the high level KPIs while the rest is part of an audit process) → needs to be worked out


Validation of the Vehicle System Relevance (1)

Public

Validation of the Vehicle System Relevance (2)

		Limousine			Limousine with winter tires			Compact class		
Run	V_ego [km/h]	Max. decel. [m/s²]	TTC at 1 st reaction [sec]	Braking distance [m]	Max. decel. [m/s²]	TTC at 1 st reaction [sec]	Braking distance [m]	Max. decel. [m/s²]	TTC at 1 st reaction [sec]	Braking distance [m]
1	20	-8.545	1.240	<mark>2.103</mark>	-7.884	1.273	<mark>2.352</mark>	-8.034	1.281	<mark>2.091</mark>
2	42	-9.836	1.286	<mark>6.595</mark>	-8.195	1.303	<mark>8.831</mark>	-8.624	1.294	<mark>7.973</mark>
3	60	-9.921	1.307	<mark>14.77</mark>	-8.269	1.330	<mark>17.509</mark>	-8.744	1.225	<mark>14.785</mark>

Source: AVL

Validation of Vehicle System Example for Lane Keep Assist

Maneuver	Physical testing	Simulation and validation
Static		
COG measurement		
Spring deformation meas.		
Steering ratio meas.		
Longitudinal		
Acceleration		
Braking		
Coasting		
Lateral response		
Steady-state cornering	ISO 4138	ISO 19364
Sine with Dwell	UN/ECE-R13H, FMVSS 126	ISO 19365
Slalom		
Severe lane change	ISO 3888-2	
Lateral transient response		
Step steer	ISO 7401	ISO 22140 NWIP
Sine sweep	ISO 8726	ISO 22140 NWIP
On-center handling	handling	
Weave test	ISO 13674-1	Pfeffer validation program
Transition test	ISO 13674-2	ISO 19364

KPIs (Lateral transient response)
Steady-state yaw velocity response gain
Lateral acceleration response time
Yaw velocity response time
Lateral acceleration peak response time
Yaw velocity peak response time
Overshoot value of lateral acceleration
Overshoot value of yaw velocity

Source: joint project focusing on virtual-based homologation of LKAS between:

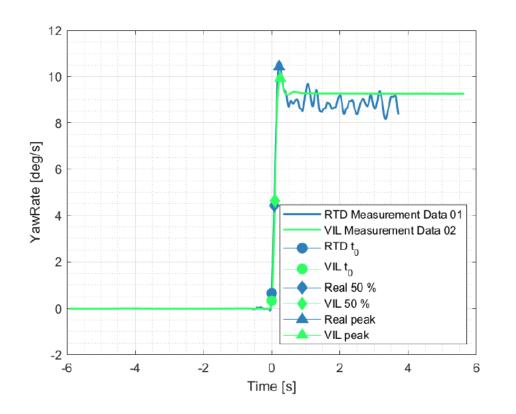


Figure 4.18: Step Steer: Time vs. YawRate

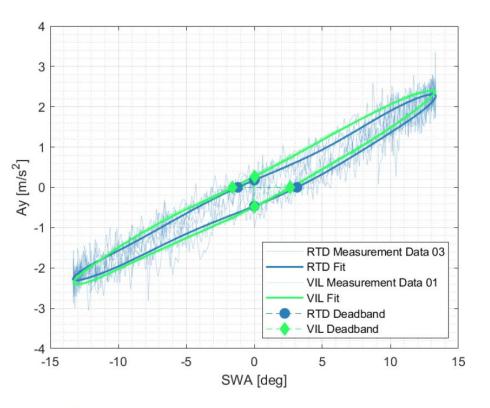
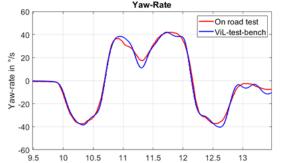
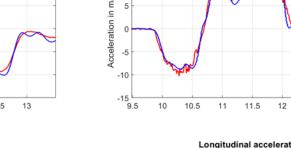
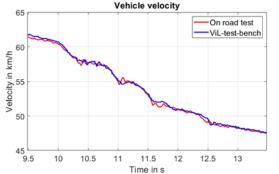


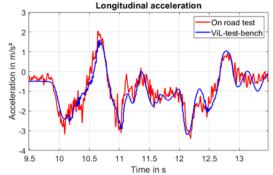
Figure 4.20: Weave Test: Steering Wheel Angle vs. Ay


Source: joint project focusing on virtual-based homologation of LKAS between:



ISO 3888-2 Lane change maneuver with ESC intervention

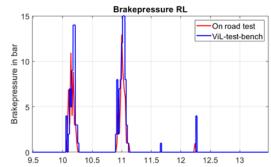



15

10 /s²

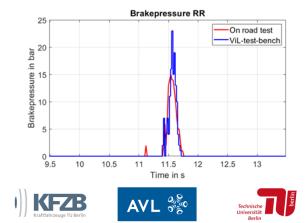
/ 29

Public


Lateral acceleration

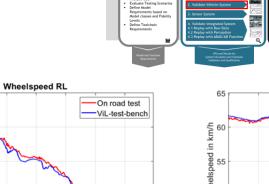
On road test

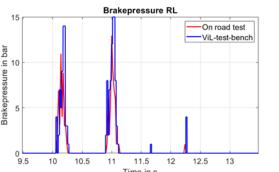
12.5


ViL-test-bench

13

Time in s




Steering at the Powertrain Test Bench - A New Validation Method for Highly Automated Systems up to the Limits of Vehicle Dynamics

Chair of A TU Berlin
0 Bellin

rof. Dr.- Ing. Steffen Müller Osama Al-Saidi, M.Sc. hair of Automotive Engineering, Chair of Automotive Engineering TU Berlin

8th INTERNATIONAL SYMPOSIUM ON DEVELOPMENT METHODOLOGY, Wiesbaden, 13th November 2019

11.5

12

12.5

13

Source:

65

60

R 55

\$ 50

45

9.5

10

10.5

11

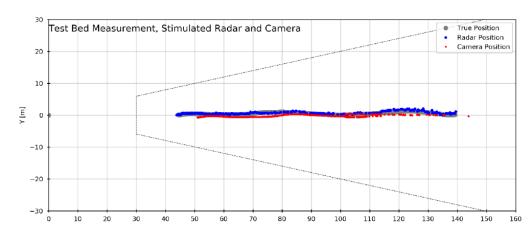
Validation of Vehicle System Conclusion

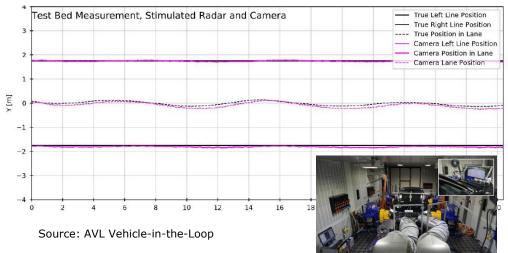
Conclusion 5:

/ 30

For the Validation of the Vehicle System, several standards are existing and can be also applied in the area of automated driving. **BUT:** The focus and the KPIs needs to be reviewed and adapted: E.g. is the breakaway torque and the friction of the steering system highly relevant as the AD function might be more sensitive than a real driver

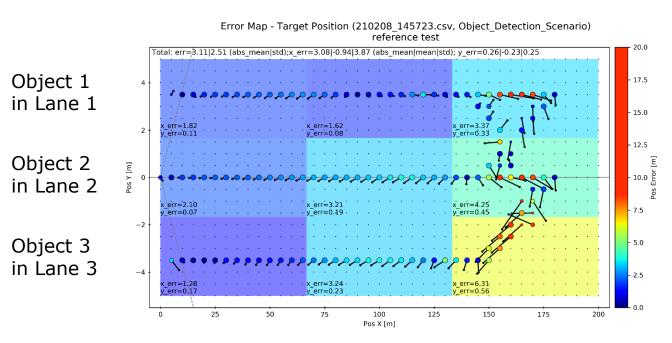
Examples: Validation of the Sensor System


Source: Heinzler et al: Weather Influence and Classification with Automotive Lidar Sensors

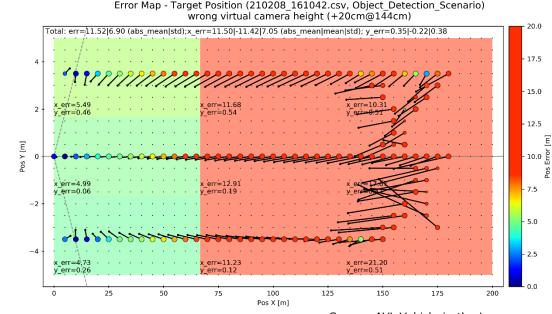


Source: Virtual Vehicle Research GmbH

/ 31

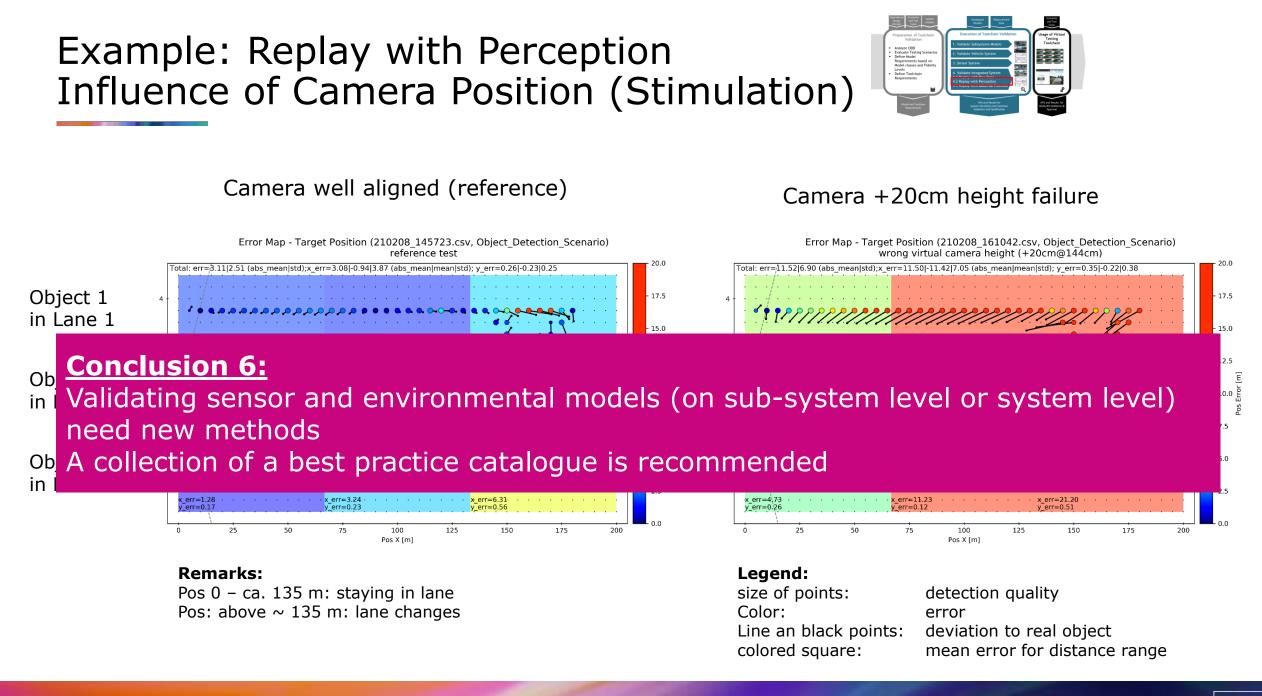

Public

Example: Replay with Perception Influence of Camera Position (Stimulation)


Camera well aligned (reference)

Remarks:

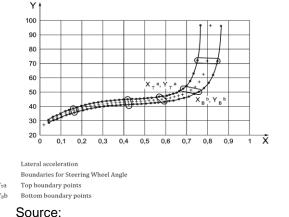
Pos 0 – ca. 135 m: staying in lane Pos: above \sim 135 m: lane changes

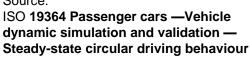

Camera +20cm height failure

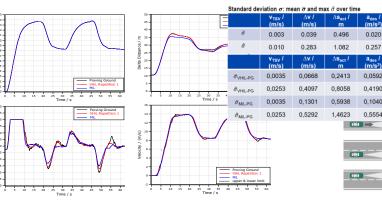
Source: AVL Vehicle-in-the-Loop

Legend:size of points:dColor:eLine an black points:dcolored square:n

detection quality error deviation to real object mean error for distance range


Evaluation and KPIs


Example: Metrics for Validation


- Validation based on time-based data
 - Compare state changes
 - Compare against tolerance band
 - Apply statistical methods (standard deviation, regression analysis)
- Validation based on KPIs
 - Compare dedicated KPIs
 - Apply statistical methods (standard deviation, regression analysis)
- Validation of numerical behavior
 - E.g. check long-term behavior (integration errors)
 - Etc.

/ 35

Conclusion 7: Knowing the error and the limitation is already a value, minimizing the error for certain use cases is the second step

Source:

Riedmaier, S.; Nesensohn, J.; Gutenunst, C.; Düser, T.; Schick, B.; Abdellatif, H.: Validation of X-in-the-Loop Approaches for Virtual Homologation of Automated Driving Functions, GSVF Symposium 2018, Graz

Metric	Test run	Tolerance
First peak yaw rate ($\dot{\Psi}_1$ in Figure 2)	Last run without ESC intervention	
1	First run with ESC intervention	±15%
	Last run	
Time of yaw rate crossing zero (T _c in in	Last run without ESC intervention	
Figure 2)	First run with ESC intervention	±0,1 s
	Last run	
Second peak yaw rate (Ψ_2 in Figure 2)	Last run without ESC intervention	±20%
become peak yaw rate (11 mrigare 2)	First run with ESC intervention	±25%
	Last run	±25%
Lateral displacement of the vehicle C.G.	Last run without ESC intervention	±15%
	First run with ESC intervention	±18%
	Last run	±18%

Source:

ISO/DIS 19365 Passenger cars — Validation of vehicle dynamic simulation — Sine with dwell stability control testing

Conclusion

Conclusion

- The whole process from sub-systems to the integrated system is relevant for the validation of the virtual testing toolchain
 - Not everything has to be executed every time (e.g. if sub-models are clearly defined and already validated)
 - Some parts of the process can be considered in the audit
 - The toolchain validation tests must be different to the ADAS/AD validation tests
- Defining fidelity levels for the sub-models helps structuring and traceability
- The evaluation and the KPIs must considered not only the important physical signals but also the cosimulation quality, determinism, etc.
- Established validation methods for vehicle dynamics needs to be reviewed and enhanced
- Validating sensor and environmental models (on sub-system level or system level) needs new methods, a collection of a best practice catalogue is recommended before deriving concrete methods
- The validation process needs to consider also mixed environments (with real hardware) like Hardware-inthe-Loop, Drive-in-the-Loop and Vehicle-in-the-Loop