Economic and Social Council

Economic Commission for Europe
Inland Transport Committee
World Forum for Harmonization of Vehicle Regulations
Working Party on Automated/Autonomous and Connected Vehicles

Seventh session

Geneva, 21-25 September 2020
Item 4 (d) of the provisional agenda
Automated/autonomous and connected vehicles:
UN Regulation on Automated Lane Keeping Systems
Proposal for an amendment to UN Regulation on Automated Lane Keeping Systems (ALKS)

Submitted by the expert from Germany *

The text reproduced below was prepared by the expert from Germany. The proposal is aimed at raising the specified maximum speed up to $130 \mathrm{~km} / \mathrm{h}$. The modifications to the existing text of the Regulation are marked in bold for new or strikethrough for deleted characters.

[^0]
I. Proposal

Paragraph 2.1., amend to read:
2.1. "Automated Lane Keeping System (ALKS)" for low speed applieation is a system which is activated by the driver and which keeps the vehicle within its lane for travelling speed of $60130 \mathrm{~km} / \mathrm{h}$ or less by controlling the lateral and longitudinal movements of the vehicle for extended periods without the need for further driver input.
Within this Regulation, ALKS is also referred to as "the system".
Paragraph 5.2.3.1., amend to read:

5.2.3.1. \quad Speed

The manufacturer shall declare the specified maximum speed based on the forward detection range of the system as described in paragraph 7.1.1.

The maximum speed up to which the system is permitted to operate is 60 $130 \mathrm{~km} / \mathrm{h}$.

Paragraph 5.2.3.3., amend to read:
5.2.3.3. The activated system shall detect the distance to the next vehicle in front as defined in paragraph 7.1.1. and shall adapt the vehicle speed in order to avoid a collision.
While the ALKS vehicle is not at standstill, the system shall adapt the speed to adjust the distance to a vehicle in front in the same lane to be equal or greater than the minimum following distance.
In case the minimum time gap cannot be respected temporarily because of other road users (e.g. vehicle is cutting in, decelerating lead vehicle, etc.), the vehicle shall readjust the minimum following distance at the next available opportunity without any harsh braking unless an emergency manoeuvre would become necessary.
The minimum following distance shall be calculated using the formula:
$\mathrm{d}_{\text {min }}=\mathrm{v}_{\text {ALKS }} * \mathrm{t}_{\text {front }}$
Where:
$\mathrm{d}_{\text {min }}=\quad$ the minimum following distance
$\mathrm{v}_{\mathrm{ALKS}}=\quad$ the present speed of the ALKS vehicle in m / s
$\mathrm{t}_{\text {front }}=$ minimum time gap in seconds between the ALKS vehicle and a leading vehicle in front as per the table below:

Present speed of the ALKS vehicle		Minimum time gap	Minimum following distance
$(\mathrm{km} / \mathrm{h})$	$(\mathrm{m} / \mathrm{s})$	(s)	(m)
7.2	2.0	1.0	2.0
10	2.78	1.1	3.1
20	5.56	1.2	6.7
30	8.33	1.3	10.8
40	11.11	1.4	15.6
50	13.89	1.5	20.8
60	16.67	1.6	26.7
$\mathbf{7 0}$	$\mathbf{1 9 . 4 4}$	$\mathbf{1 . 7}$	$\mathbf{3 3 . 1}$
$\mathbf{8 0}$	$\mathbf{2 2 . 2 2}$	$\mathbf{1 . 8}$	$\mathbf{4 0 . 0}$
$\mathbf{9 0}$	$\mathbf{2 5 . 0 0}$	$\mathbf{1 . 9}$	$\mathbf{4 7 . 5}$

Present speed of the ALKS vehicle		Minimum time gap	Minimum following distance
$\mathbf{1 0 0}$	$\mathbf{2 7 . 7 8}$	$\mathbf{2 . 0}$	$\mathbf{5 5 . 6}$
$\mathbf{1 1 0}$	$\mathbf{3 0 . 5 6}$	$\mathbf{2 . 0}$	$\mathbf{6 1 . 1}$
$\mathbf{1 2 0}$	$\mathbf{3 3 . 3 3}$	$\mathbf{2 . 0}$	$\mathbf{6 6 . 7}$
$\mathbf{1 3 0}$	$\mathbf{3 6 . 1 1}$	$\mathbf{2 . 0}$	$\mathbf{7 2 . 2}$

For speed values not mentioned in the table, linear interpolation shall be applied.
Notwithstanding the result of the formula above for present speeds below 2 m / s the minimum following distance shall never be less than 2 m .

The requirements of this paragraph are without prejudice to other requirements in this Regulation, most notably paragraphs 5.2.4. and 5.2.5. with subparagraphs.

Paragraph 5.2.5.3., amend to read:
5.2.5.3. The activated system shall avoid a collision with an unobstructed crossing pedestrian in front of the vehicle.
In a scenario with an unobstructed pedestrian crossing with a lateral speed component of not more than $5 \mathrm{~km} / \mathrm{h}$ where the anticipated impact point is displaced by not more than 0.2 m compared to the vehicle longitudinal center plane, the activated ALKS shall avoid a collision up to the maximum eperational speed of the system $60 \mathbf{~ k m} / \mathbf{h}$.
Paragraph 5.4.2., amend to read:
5.4.2. The initiation of the transition demand shall be such that sufficient time is provided for a safe transition to manual driving.
Manufacturers shall declare during type approval that drivers' adjustments in and on the vehicle when the system is active (e.g. for the purpose of engaging in non-driving related activities) do not have negative consequences to a take-over in the manual driving phase."

Paragraph 7.1.1., amend to read:
7.1.1. Forward detection range

The manufacturer shall declare the forward detection range measured from the forward most point of the vehicle. This declared value shall be at least 46 metres for a specified maximum speed of $60 \mathrm{~km} / \mathrm{h}$.

A specified maximum speed above $60 \mathrm{~km} / \mathrm{h}$ shall only be declared by the manufacturer, if the declared forward detection range fulfils the corresponding minimum value according the following table:

Minimum forward detection
Specified maximum speed /
range/
km/h

$0 . .60$	46
70	5060
80	$60 \underline{00}$
90	$75 \underline{100}$
100	$\underline{90120}$
110	$\mathbf{1 1 0 1 4 0}$
120	130170

[^1]| Specified maximum speed/
 km / h | Minimum forward detection
 range/
 m |
| :--- | ---: |
| $\mathbf{1 3 0}$ | $\mathbf{1 5 0 2 0 0}$ |

For values not mentioned in the table, linear interpolation shall be applied.
It is recognized that the minimum forward detection range cannot be achieved under all conditions. Nevertheless, the system shall implement appropriate strategies in order to ensure safe operation at all times.

The Technical Service shall verify that the distance at which the vehicle sensing system detects a road user during the relevant test in Annex 5 is equal or greater than the declared value.

II. Justification

1. In previous sessions of the former Informal Working Group (IWG) on Automatically Commanded Steering Function (ACSF) the overall objective was to develop technical requirements for Automated Lane Keeping Systems (ALKS). The limitation to low speed applications (with a specified maximum speed of $60 \mathrm{~km} / \mathrm{h}$) was agreed in order to deliver within the given timeline. After having successfully accomplished the work for the system in a first step, Germany has now reviewed and examined the existing requirements under the premise of increasing the specified maximum speed up to $130 \mathrm{~km} / \mathrm{h}$.
2. The approach taken in this proposal does not change the agreed approach in the existing UN Regulation for ALKS for low speed applications (ECE/TRANS/WP.29/2020/81): the activated system shall comply with traffic rules in the country of operation (e.g. in countries where the maximum speed is limited to $100 \mathrm{~km} / \mathrm{h}$, the ALKS is not permitted to operate at speeds above the legal speed limit), take environmental and sensor conditions for the maximum operational speed into account as well as respect the current traffic situation for the selection of the present speed.
3. The proposed requirements for high speed applications up to $130 \mathrm{~km} / \mathrm{h}$ are understood to be "if fitted" requirements: if a vehicle manufacturer chooses to bring such an ALKS to the market, the proposed technical requirements shall be meet and fulfilled.

[^0]: In accordance with the programme of work of the Inland Transport Committee for 2020 as outlined in proposed programme budget for 2020 ($\mathrm{A} / 74 / 6$ (part V sect. 20) para 20.37), the World Forum will develop, harmonize and update UN Regulations in order to enhance the performance of vehicles. The present document is submitted in conformity with that mandate.

[^1]: Kommentar [FH1]: The defined the forward detection range from braking performance $5 \mathrm{~m} / \mathrm{s} 2$ do not fulfil expectation to detect/stop in front of standing still humans (VRU), large animals or objects With more "normal braking the distance should be closer to 200 m instead of current 150 m at $130 \mathrm{~km} / \mathrm{h}$ (a pure extension of what is defined 46 m @ $60 \mathrm{~km} / \mathrm{h}$). In addition, it is obvious that $5 \mathrm{~m} / \mathrm{s} 2$ is not reachable at $\mathrm{bad} /$ slippery road/whether conditions. The system are not necessary limited to operate at such conditions.

 Figures should be based upon earlier
 agreement, $3,7 \mathrm{~m} / \mathrm{s} 2$ and Tsys $0,5 \mathrm{~s}$

