Understanding simulation requirements: Approaches and use cases

Dr Siddartha Khastgir CEng MIMechE Head of Verification & Validation, Intelligent Vehicles UK Technical Representative – ISO TC204/WG14, ISO TC22/SC33/WG9

VMAD SG2: Simulation 24 February 2021

Evaluation continuum

Simulated Environment **Digital World Controlled Environment Public Environment MIDLANDS FUTURE** MOBILITY Increasing Realism ZENZ Increasing Control, and repeatability SELE-DRIVING REVOLUTION BIRMING A springboard for scalable, real-world future mobility technologies and services. LONDO Sources: WMG, WMG, MIRA, Zenzic

THE APPROACH

Scenario Content Generation

Reference: OmniCAV project: <u>www.omnicav.com</u> Paper: OmniCAV: A Simulation and Modelling System that enables "CAVs for All" – Brackstone et. al., IEEE ITSC 2020

Scenario Content Generation

STPA Scenario Parametrisation

UCA #	UCA	Parameters					
		Scenery	Dynamic elements (exclusive of subject)	UCA specific context	UCA how (INTa = negate; INTb = same; EXT = same)	UCA how parameters	
8b	Localization provides pose which doesn't match the ground truth	From scenery library	From dynamic elements library	pose doesn't match the ground truth	delay time which sensor data delayed	delay time which sensor data delayed	

Scenario Type	Pass Criteria 1 (negate belief)	Pass Criteria 2 (negate because)	Observation points needed (Pass criteria + initial state observation)	Stimulation points needed	
 INTb	Obtaining Pose block shall not believe it has the correct pose	CE shall be high (i.e., sensor data is not coherent)	Measure CE, Measure sensor data coherency	sensor feeds, request to move, filter output	

<u>Our Vision:</u> To test or evaluate any new technology (infrastructure, communications and on-vehicle) in representative real world conditions with a "driver" in the loop

WMG's 3xD Simulator for intelligent vehicles

Test setup (use cases)

- UK Govt. (CCAV) funded project – INTACT
- Project partners: Aurrigo, WMG
- Low-speed shuttle closed-loop testing
- Injection <u>behind the</u> "physical" sensors
- Intrinsic & extrinsic scenario parameters

Test setup (use cases)

- UK Govt. (CCAV) funded project – SAVVY
- Project partners: AVL, WMG, Vertizan, Horiba MIRA
- Conventional vehicle
- Radar & camera based sensors
- Injection in front of the "physical" sensors
- Intrinsic & extrinsic scenario parameters

Summary

Simulation will inevitably play a key role in ADS verification & validation process.

Simulation fidelity is dependent on the input to it. (scenario content, format, pass criteria)

Simulation fidelity is also dependent how the evidence is going to be used.

Simulation fidelity is sub-divided into sensor, environment, vehicle dynamics etc. (to be treated separately).

Success will be dependent upon suitable collaboration and data sharing, nationally and internationally.

Thank you... Discussions...

