Last Point to Brake/Last Point to Steer for Trucks

Daniel Sander
BASt, Germany

Method

Goal

Derive performance requirements from basic principles

Break down definition of AEBS performance to a few parameters

This method has been used in AEBS－M1－N1（for R152）

Some References (from Informal Working Group AEBS-M1N1)
GRVA-01-31: Speed reduction calculation sheet https://unece.org/DAM/trans/doc/2018/wp29grva/GRVA-01-31.zip
(AEBS-M1N1-03-04: LPB/LPS and pedestrian safety zone https://wiki.unece.org/download/attachments/54429506/AEBS-0304\ \(D\)\ Comments\ to\ skelton.pdf
AEBS-M1N1-04-05: LPB/LPS and pedestrian safety zone (cont'd) https://wiki.unece.org/download/attachments/60360943/AEBS-0405\ \(Germany\)\ D\ approach.pdf

- AEBS-M1N1-11-02: Bicycle brake performance https://wiki.unece.org/download/attachments/94046350/AEBS-1102\ \(D\)\ Bicycle\ braking\ performance.pdf

Concept from AEBS-M1-N1 (1)

Car-Car Scenarios (Iongitudinal conflict situations, vehicles moving in same direction)

- Braking possible at the latest at „Last Point to Steer" LPS
- $T T C_{\text {Brake }}$
- Depends on vehicle width, possible a_{y}

- Identify possible speed reduction after LPS with brake system characteristics
- Time to $1 \mathrm{~g}-\boldsymbol{t}_{\mathrm{Tolg}}$
- Maximum deceleration $-d_{\text {max }}$

AEB should act only if accident is
imminent

- „Last Point to Steer"
- „Last Point to Brake"

AEB Systems cannot select which one

 is relevant- Driver intention unknown
- Road geometry unknown

Concept from AEBS-M1-N1 (2)

Car-VRU Scenarios
(lateral conflict situations, vehicle + VRU moving orthogonal)

- LPS not meaningful
- Brake at the latest when VRU is in vehicle path (evt. including safety zone/stopping dist)
- $T T C_{\text {Brake }}$
- Depends on vehicle width, decel of VRU, impact location
- Identify possible speed reduction after LPS with brake system characteristics

Overall concepts and assumptions

D Do not define exact brake behavior！
D Define performance requirements（speed reduction）instead in order to leave the exact algorithm to the VMs

Derive performance requirements from physical model of the system
－Ego vehicle should brake at the latest when avoidance per steering is not possible anymore（ \rightarrow TTC for the start of braking）
－At start of braking，increase brake decel linear until it reaches the maximum deceleration（ \rightarrow Time to $\mathbf{1}$ g）
－Maintain maximum deceleration until standstill（ \rightarrow d＿max）

General Properties－Tipping when turning

> Right wheel load is
> $F_{\text {wheel,right }}=\frac{1}{2} m \cdot g-m \cdot \ddot{y} \cdot \frac{h_{C o G}}{w}$

Tipping when right wheel load is 0 ：

$$
\ddot{y}=\frac{w}{2 \cdot h_{C o G}} g
$$

Example：

$$
\ddot{y}=\frac{2 \mathrm{~m}}{2 \cdot 3 \mathrm{~m}} \mathrm{~g}=0.33 \mathrm{~g}
$$

Lateral Movement and Last Point to Steer

$$
\begin{gathered}
y(t)=\iint \ddot{y} \mathrm{~d} t^{2}=\left[\frac{1}{2} \ddot{y} t^{2}\right]_{t=0}^{t=t_{\text {end }}} \\
t_{\text {end }}=\sqrt{\frac{2 y_{0}}{\ddot{y}}}
\end{gathered}
$$

Using Symetry:

$$
t_{\text {end }}=2 \sqrt{\frac{y_{0}}{\ddot{y}}}
$$

VRU Situation

$$
\begin{aligned}
& y_{\text {total }}=y_{s}+\frac{w}{2} \\
& \text { TTC }_{\text {Brake }}=\frac{y_{s}}{v_{V R U}}+\frac{w}{2 \cdot v_{V R U}}
\end{aligned}
$$

Truck

Safety Zone can be interpreted
as VRU stopping distance:

$$
y_{s}=\frac{v_{V R U}^{2}}{2 \cdot a_{V R U}}
$$

$$
T T C_{B r a k e}=\frac{v_{V R U}}{2 \cdot a_{V R U}}+\frac{w}{2 \cdot v_{V R U}}
$$

Calculations

Deceleration of fully loaded N3-tractor-semitrailer combinations, 3 major brands (data: ADAC)

Time to 1 g

Vehicle width

M3
N3

N3 vehicle width [mm]

- Vehicle width used for calculation:
- M2/N2: 2000 mm (due to small share in the accident situation)
- M3/N3: 2550 mm

Lateral Movement and Last Point to Steer

$$
t_{\text {end }}=2 \sqrt{\frac{y_{0}}{\ddot{y}}}
$$

Width M3/N3 limited to 2.55 m

$$
t_{\text {end }}=2 \sqrt{\frac{2.55 \mathrm{~m}}{3 \mathrm{~m} / \mathrm{s}^{2}}}=1.84 \mathrm{~s}
$$

Width M2/N2 from 2 to 2.55 m
$t_{\text {end }}=2 \sqrt{\frac{2 \mathrm{~m}}{3 \mathrm{~m} / \mathrm{s}^{2}}}=1.63 \mathrm{~s}$

Expected AEB Performance (using GRVA-01-31)

Maximum Deceleration	
$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	7
Time- $\mathrm{To}-1 \mathrm{~g}[\mathrm{~s}]$	1
$T \mathrm{TC}_{\text {Brake }}[\mathrm{s}]$	1,8

Expected AEBS Performance as Function of Test Speed

Results
 (brake when VRU in path)

$T T C_{B r a k e}=\frac{w}{2 \cdot v_{V R U}}$

Parameter	Value	Source
$v_{\text {VRU }}$	$\begin{aligned} & 5 \mathrm{~km} / \mathrm{h}=1,39 \mathrm{~m} / \mathrm{s} \\ & (\mathrm{Ped}) \\ & 15 \mathrm{~km} / \mathrm{h}=4,17 \mathrm{~m} / \mathrm{s} \end{aligned}$	UN-R152
w	$\begin{aligned} & 2 \mathrm{~m}(\mathrm{~N} 2 / \mathrm{M} 2) \\ & 2.55 \mathrm{~m}(\mathrm{~N} 3 / \mathrm{M} 3) \end{aligned}$	N2/M2: Typical width N3/M3: EU Dimensions limit

	Pedestrian	Bicycle
N2/M2	$0.72 \mathrm{~s}\left(20 \mathrm{~km} / \mathrm{h}^{*}\right)$	$0.24 \mathrm{~s}\left(1.5 \mathrm{~km} / \mathrm{h}^{*}\right)$
N3/M3	$0.91 \mathrm{~s}\left(29 \mathrm{~km} / \mathrm{h}^{*}\right)$	$0.3 \mathrm{~s}\left(2 \mathrm{~km} / \mathrm{h}^{*}\right)$

* Avoidance speed, calculated using GRVA-01-31 with $7 \mathrm{~m} / \mathrm{s}^{2}$ peak deceleration, 1 s Time-to-1-g.

Results	Parameter	Value	Source
(with safety zone)	$\nu_{\text {VRU }}$	$\begin{aligned} & 5 \mathrm{~km} / \mathrm{h}=1,39 \mathrm{~m} / \mathrm{s} \\ & (\mathrm{Ped}) \\ & 15 \mathrm{~km} / \mathrm{h}=4,17 \mathrm{~m} / \mathrm{s} \end{aligned}$	UN-R152
$T T C_{B r a k e}=\frac{v_{V R U}}{2 \cdot a_{V R U}}+\frac{w}{2 \cdot v_{V R U}}$	$a_{\text {VRU }}$	$\begin{aligned} & 1,5 \ldots 3 \mathrm{~m} / \mathrm{s}^{2} \text { (Ped) } \\ & 4 \ldots 5 \mathrm{~m} / \mathrm{s}^{2} \text { (Bicycle) } \end{aligned}$	Ped: Tiemann, N., Branz, W., Schramm, D.: „Predictive Pedestrian Protection Situation Analysis with a Pedestrian Motion Model". In: Proceedings of the 10th International Symposium on Advanced rol. Loughborough, UK, Bicycle: AEBS-11-02 (AEBS-M1-N1=
	w	$\begin{aligned} & 2 \mathrm{~m} \text { (N2/M2) } \\ & 2.55 \mathrm{~m} \text { (N3/M3) } \end{aligned}$	N2/M2: Typical width N3/M3: EU Dimensions limit

	Pedestrian	Bicycle
N2/M2	$1.03 \mathrm{~s}\left(35 \mathrm{~km} / \mathrm{h}^{*}\right)$	$0.76 \mathrm{~s}\left(22 \mathrm{~km} / \mathrm{h}^{*}\right)$
$\mathrm{N} 3 / \mathrm{M} 3$	$1.09 \mathrm{~s}\left(38 \mathrm{~km} / \mathrm{h}^{*}\right)$	$0.82 \mathrm{~s}\left(25 \mathrm{~km} / \mathrm{h}^{*}\right)$

* Avoidance speed, calculated using GRVA-01-31 with $7 \mathrm{~m} / \mathrm{s}^{2}$ peak deceleration, 1 s Time-to-1-g.

Conclusions and Position

Possible Avoidance Speeds (up to...) (Mitigation to be discussed later)

Theoretical considerations; only few systems availabe.

Vehicle Category	VehicleVehicle (DE Position)	VehiclePedestrian (Step 1)*	VehicleBicycle (Step 1)	VehiclePedestrian (Step 2)*	VehicleBicycle (Step 2)*
N2	$65 \mathrm{~km} / \mathrm{h}$	$20 \mathrm{~km} / \mathrm{h}$	-	35 km/h	22 km/h
M2	$65 \mathrm{~km} / \mathrm{h}$	$20 \mathrm{~km} / \mathrm{h}$	-	$35 \mathrm{~km} / \mathrm{h}$	$22 \mathrm{~km} / \mathrm{h}$
N3	$75 \mathrm{~km} / \mathrm{h}^{* *}$	$29 \mathrm{~km} / \mathrm{h}$	-	$38 \mathrm{~km} / \mathrm{h}$	$25 \mathrm{~km} / \mathrm{h}$
M3	75 km/h**	$29 \mathrm{~km} / \mathrm{h}$	-	38 km/h	$25 \mathrm{~km} / \mathrm{h}$

*It should be noted that these speed reductions are possible ONLY when the mandatory warning phase of 1.4 s is removed.
**Measurement data from production vehicles confirms these values.

