

Last Point to Brake/Last Point to Steer for Trucks

Daniel Sander BASt, Germany

Method

Goal

- Derive performance requirements from basic principles
- Sreak down definition of AEBS performance to a few parameters
- This method has been used in AEBS-M1-N1 (for R152)

Some References (from Informal Working Group AEBS-M1N1)

- GRVA-01-31: Speed reduction calculation sheet <u>https://unece.org/DAM/trans/doc/2018/wp29grva/GRVA-01-31.zip</u>
- AEBS-M1N1-03-04: LPB/LPS and pedestrian safety zone

https://wiki.unece.org/download/attachments/54429506/AEBS-03-04%20%28D%29%20Comments%20to%20skelton.pdf

AEBS-M1N1-04-05: LPB/LPS and pedestrian safety zone (cont`d)

https://wiki.unece.org/download/attachments/60360943/AEBS-04-05%20%28Germany%29%20D%20approach.pdf

AEBS-M1N1-11-02: Bicycle brake performance

https://wiki.unece.org/download/attachments/94046350/AEBS-11-02%20%28D%29%20Bicycle%20braking%20performance.pdf

Concept from AEBS-M1-N1 (1)

Car-Car Scenarios (longitudinal conflict situations, vehicles moving in same direction)

- Steer LPS
 Steer LPS
 - TTC_{Brake}
 - Depends on vehicle width, possible a_y
- Identify possible speed reduction after LPS with brake system characteristics
 - Time to 1g t_{To1g}
 - Maximum deceleration d_{max}

oast

From AEBS-02-11

Federal Ministry of Transport and Digital Infrastructure

Basics – Achievable Speed Reductions

AEB should act only if accident is imminent

- "Last Point to Steer"
- "Last Point to Brake"

AEB Systems cannot select which one is relevant

- Driver intention unknown
- Road geometry unknown

3

Car-VRU Scenarios (<u>lateral</u> conflict situations, vehicle + VRU moving orthogonal)

- LPS not meaningful
- Srake at the latest when VRU is in vehicle path (evt. including safety zone/stopping dist)
 - TTC_{Brake}
 - Depends on vehicle width, decel of VRU, impact location
- Identify possible speed reduction after LPS with brake system characteristics
 - Time to 1g t_{Tolg}
 - Maximum deceleration d_{max}

Concept from AEBS-M1-N1 (2)

Overall concepts and assumptions

- Do not define exact brake behavior!
- Define performance requirements (speed reduction) instead in order to leave the exact algorithm to the VMs

Derive performance requirements from physical model of the system

- Ego vehicle should brake at the latest when avoidance per steering is not possible anymore (-> TTC for the start of braking)
- At start of braking, increase brake decel linear until it reaches the maximum deceleration (> Time to 1 g)
- Maintain maximum deceleration until standstill (→ d_max)

General Properties – Tipping when turning

Right wheel load is

$$F_{wheel,right} = \frac{1}{2}m \cdot g - m \cdot \ddot{y} \cdot \frac{h_{CoG}}{w}$$
Tipping when right wheel load is

Tipping when right wheel load is 0:

$$\ddot{y} = \frac{w}{2 \cdot h_{CoG}} g$$

$$\ddot{y} = \frac{2 \text{ m}}{2 \cdot 3 \text{m}} \text{g} = 0.33 \text{g}$$

Lateral Movement and Last Point to Steer

Calculations

Deceleration of fully loaded N3-tractor-semitrailer combinations, 3 major brands (data: ADAC)

Time to 1 g

- Vehicle width used for calculation:
 - M2/N2: 2000 mm (due to small share in the accident situation)
 - M3/N3: 2550 mm

Vehicle width

Lateral Movement and Last Point to Steer

Expected AEB Performance (using GRVA-01-31)

Maximum Deceleration [m/s ²]	7
Time-To-1g [s]	1
TTC _{Brake} [s]	1,8

80 70 60 50 40 Speed Reduction [km/h] 30 ——Impact Speed [km/h] 20 10 0 105 107,5 110 Test Speed [km/h] Source: GRVA-01-31

Expected AEBS Performance as Function of Test Speed

Results (brake when VRU in path)

$$TTC_{Brake} = \frac{w}{2 \cdot v_{VRU}}$$

Parameter	Value	Source
v _{vru}	5 km/h = 1,39 m/s (Ped) 15 km/h = 4,17 m/s	UN-R152
W	2 m (N2/M2) 2.55 m (N3/M3)	N2/M2: Typical width N3/M3: EU Dimensions limit

	Pedestrian	Bicycle
N2/M2	0.72 s (20 km/h*)	0.24 s (1.5 km/h*)
N3/M3	0.91 s (29 km/h*)	0.3 s (2 km/h*)

* Avoidance speed, calculated using GRVA-01-31 with 7 m/s² peak deceleration, 1 s Time-to-1-g.

Results (with safety zone)

TTC _{Brake} =	v_{VRU}	W	
	$2 \cdot a_{VRU}$	$\frac{1}{2 \cdot v_{VRU}}$	

Parameter	Value	Source
v _{vru}	5 km/h = 1,39 m/s (Ped) 15 km/h = 4,17 m/s	UN-R152
a _{vru}	1,5 3 m/s ² (Ped) 45 m/s ² (Bicycle)	Ped: Tiemann, N., Branz, W., Schramm, D.: "Predictive Pedestrian Protection – Situation Analysis with a Pedestrian Motion Model [*] . In: Proceedings of the 10th International Symposium on Advanced Vehicle Control. Loughborough, UK, 2010. Bicycle: AEBS-11-02 (AEBS-M1-N1=
W	2 m (N2/M2) 2.55 m (N3/M3)	N2/M2: Typical width N3/M3: EU Dimensions limit

	Pedestrian	Bicycle	
N2/M2	1.03 s (35 km/h*)	0.76 s (22 km/h*)	
N3/M3	1.09 s (38 km/h*)	0.82 s (25 km/h*)	

* Avoidance speed, calculated using GRVA-01-31 with 7 m/s² peak deceleration, 1 s Time-to-1-g.

Conclusions and Position

Possible Avoidance Speeds (up to...) (*Mitigation to be discussed later*)

Theoretical considerations; only few systems availabe.

Vehicle Category	Vehicle- Vehicle (DE Position)	Vehicle- Pedestrian (Step 1)*	Vehicle- Bicycle (Step 1)	Vehicle- Pedestrian (Step 2)*	Vehicle- Bicycle (Step 2)*
N2	65 km/h	20 km/h	-	35 km/h	22 km/h
M2	65 km/h	20 km/h	-	35 km/h	22 km/h
N3	75 km/h**	29 km/h	-	38 km/h	25 km/h
M3	75 km/h**	29 km/h	-	38 km/h	25 km/h

*It should be noted that these speed reductions are possible ONLY when the mandatory warning phase of 1.4s is removed.

**Measurement data from production vehicles confirms these values.

