Why RWS with HIGH sound level?

Volvo Group Technology (OICA) Per-Uno Sturk 2021-04-16

Industrial site

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283568753
DETECTION OF REVERSE ALARMS IN NOISY WORKPLACES

"Realistically, however, a vehicle can operate at various idling speeds and other engine regimes, with other noise sources in proximity of workers also contributing to the overall noisy background; hence, lower or higher alarm levels may be required depending on the situation."

RWS: SPL_{Truck RWS@7m} > **86 dBA => SAE J994 Type B**

SWL_{Whelloader} = **105-112 dBA**

Calculate background sound level

$L_{W} = L_{p} + |10 \cdot \log \left(\frac{Q}{4\pi \cdot r^{2}} \right)|$

Q = 2 for half spherical wave transmission

Examples and assumptions:

- Ambient sound from the site (machines and vehicles far away): 80 dBA
- Sound from the wheel loader: SWL= 105-112 dBA (Source Volvo CE)
 - at worker standing at 7 m : SPL @ 7 m = SWL 25 = 80-87 dBA
- Sound from the truck (idling):
 SPL @ 7 m <60 dBA
- Estimated background sound at worker: SPL_{worker} = {80}+{85}+{60} = 86 dBA {addition in dB}
- Needed SPL_{RWS@7m} > SPL_{Back ground worker} = 86 dBA => SWL_{RWS} > 101 dBA => **Propose to mount SAE J994 Type B.**

$$\begin{split} SPL@r &= 10log \frac{p^2}{p_{ref}^2}; \quad p^2 = D\frac{\rho_0 c \overline{W}}{4\pi r^2}; \qquad SWL = 10log \frac{\overline{W}}{W_{ref}} \\ SPL@r &= 10 \log D\frac{\rho_0 c \overline{W}}{4\pi r^2} - 20 \log p_{ref} = 10 \log \overline{W} - 10 \log r^2 + 10 \log D\frac{\rho_0 c}{4\pi} - 20 \log p_{ref} = \\ &= SWL + 10 \log W_{ref} - 20 \log r - 20 \log p_{ref} + 10 \log D + 10 \log \frac{\rho_0 c}{4\pi} = \\ &= SWL - 120 - 20 \log r + 94 + 10 \log D + 15 = \\ &= SWL - 11 - 20 \log r + 10 \log D = SWL - 8 - 20 \log r; \ while \ D = 2. \end{split}$$

SPL @ 7 m = SWL - 25 for r=7 m and D=2

SPL @ 1 m = SWL - 8 for r=1 m and D=2

SPL @ 1, 2 m = SWL - 10 for r=1,2 m and D=2

r= distance to sound source; $\overline{W}=time~average~Sound~power$; D = directionality (2 when half sphere); $W_{ref}=10^{-12}~Watt;$ $p_{ref}=2\cdot 10^{-5}~Pa; \rho~~\rho_0=1,21~kg/liter; c=331~m/s$

Typical industry site background noise

Several industrial sites worldwide, with heavy machines – stationary and moving – have very high background noise levels.

Examples from Canada:

```
Limestone plant 80,5 dBA;
Quicklime plant 83,3 dBA;
Sawmill plant #1 85,9 dBA;
Sawmill plant #2 89,6 dBA.
```

PAPER 1 - Vaillancourt, Nélisse, Laroche, Giguère, Boutin, Laferrière - Comparison of sound propagation and perception of three types of backup alarms with regards to worker safety

<u>PAPER 2 – (FULL REPORT)</u> - Vaillancourt, Nélisse, Laroche, Giguère, Boutin, Laferrière - 2014 - Safety of Workers Behind Heavy Vehicles Assessment of Three Types of Reverse Alarm IRSST

Limit values related to typical alarms — Types defined in SAE J994

Draft modes		min	max	min	max	min	max	min	max		New
Low mode	[dBA]	57	72	55	70	51	66	40	55/		proposa
Normal mode	[dBA]	77	92	75	90	71	86	60	<i>7</i> 15		
High mode	[dBA]	97	112	95	110	91	106	80 ~	95		
r - "distance" [m]		1 m		1,2 m		2 m		7 m		7,5 m	
	SWL	Japanese	e standard	SAE	1994			ISO	9533	Р	IEK
Type A - 112 dBA	122	1	14	1	.12	1	.08	9	97	g	96
Type B - 107 dBA	117	1	09	1	.07	1	.03		92	g	91
Type C - 97 dBA	107	9	99		97	9	93		82	8	31
Type D	97	8	39		87		33		72	-	71
Туре Е	87	-	79	•	77	-	73		62	6	51
Type F [Other]											
Product tolerance				+	-/-4						

Examples for Europe (UK) –

Type C - 97 dB (A): Unshielded SPL@7m = 82 dBA:

https://accessories.scania.com/en/catalog/VA/Safety---Security/Camera-and-monitoring-systems/Reversing-warning https://www.amazon.com/Yuesonic-Backup-Reversing-Connection-Vehicles/dp/B07TG8P832

Roll over image to zoom in

Typical output levels according to Brigade:

82-107 dB(A)

Corresponds to SAE J994 type D to B.

"the background noise in a busy high street is about 65dB(A)"

Ref. https://brigade-electronics.com/back-up-beeper-sound-decibels-and-the-basics-behind-reversing-alarm-sounds/

