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ABSTRACT The process of verification and validation of automated vehicles poses amulti-faceted challenge
with far-reaching societal, economical and ethical consequences. In particular, fully automated vehicles at
SAE Level 4 and 5 will be expected to operate safely in an arbitrarily complex, infinite-dimensional domain
called open context. In order to give structure to the open context, we propose amethodical criticality analysis
that maps an infinite-dimensional domain onto a finite and manageable set of artifacts that capture and
explain the emergence of critical situations for automated vehicles. We propose a combined approach of
expert-based and data-driven methods to identify relevant phenomena and explain the underlying causalities.
Leveraging on abstraction, we define a clearly laid out process that converges towards a manageable set
of artifacts based on two assumptions on the nature of traffic. A criticality analysis precedes the design
phase of an automated vehicle and is therefore located outside the V-model. As the open context is analyzed
independently of a concrete realization, it is relevant for any automated vehicle operating within that domain.
Therefore, its results can subsequently be used to derive safety principles and mitigation mechanisms for
automated driving and to set up a coherent safety argument for the homologation process.

INDEX TERMS Criticality, verification, validation, homologation, automated vehicles, open context,
automotive safety.

I. INTRODUCTION
Automated vehicles (AVs) at SAE Level 4 and 5 [70] are
complex systems operating in open context [68]. Therefore,
their verification and validation principally necessitates the
consideration of all possible traffic situations and influencing
factors during the design- and testing phase of such systems.
The resulting test space cannot be covered adequately using
traditional distance-based statistical approaches to testing
[53], [80], usually referred to as dilemma of completeness.
Recent research projects such as PEGASUS1 and ENABLE-
S32 explored a scenario-based approach to verification and
validation of AVs at SAE Level 3, where testing is performed
by deriving relevant test cases from a manageable set of
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scenario classes. As a successor of PEGASUS, the project
VVM–Verification and Validation Methods for Level 4 and
5AutomatedVehicles3–aims at extending this scenario-based
approach to AVs at higher levels of automation and more
complex environments. In order to define scenario classes
that effectively condense verification and validation efforts,
the open context needs to be structured systematically.

As one endeavor in this need for structure, the VVM
project develops a method, called criticality analysis, which
analyzes the open context of urban traffic. The method is
evaluated for the use case urban intersection. The core steps
of the criticality analysis, detailed in this publication, include
(i) extracting relevant influencing factors, called critical-

ity phenomena,
(ii) improving the understanding of criticality phenomena

by identifying underlying causal relations,

3www.vvm-projekt.de/en
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(iii) using abstraction and classification of causal relations
for scenario space condensation.

Figure 1 depicts the criticality analysis as a mapping of
the open context onto a finite set of artifacts, as listed above.
Long-term goals include the derivation of safety principles
and mitigation mechanisms for automated vehicles based on
the results of the criticality analysis, in particular on causal
relations. However, this will be the focus of future work.

FIGURE 1. The goal of the criticality analysis is to map the
infinitely-dimensional open context to a finite set of artifacts by analyzing
the underlying structures.

The following section II sketches the automotive verifi-
cation and validation landscape and relates the presented
method to the V-model of ISO 26262. We introduce the high
level goals of the criticality analysis, including employed
terminology and artifacts, in section III. The basic concept
is subsequently presented in section IV. Based on two fun-
damental but reasonable assumptions on the nature of traffic,
we explain our approach to solving the dilemma of complete-
ness. For each step of the criticality analysis we lay out the
associated problems and projected solutions in section V. We
conclude by proposing future work, in particular, detailing
out the steps of the criticality analysis.

II. LANDSCAPE OF AUTOMOTIVE VERIFICATION &
VALIDATION
In this section we provide a brief discussion on how the
homologation of automated vehicles impacts existing auto-
motive safety processes. Moreover, we introduce the larger
context of the criticality analysis, namely the projects VVM,
where the criticality analysis is developed, and its sister
project SET Level.4 Both project are successors to the PEGA-
SUS project and, therefore, part of the PEGASUS project
family. The section ends with stating our contribution.

A. ADAPTION OF AUTOMOTIVE SAFETY PROCESSES
Although there are a number of advanced driver assistant
systems (ADAS), i.e. SAE Level 2, available on the market,
the next step towards higher levels of automation, i.e. SAE
Level ≥ 3, heavily impacts the processes of verification and
validation of such automated vehicles.

For contemporary ADAS, such as advanced cruise control,
lane departure warning or emergency brake assistant, inter-
vention is restricted to either lateral or longitudinal control
of the vehicle. The human driver is constantly responsible

4https://setlevel.de

for the driving task [8]. In contrast, automated driving sys-
tems (ADS) release the human driver (temporarily) from the
driving task and take full control of the vehicle by performing
accelerating and braking as well steering actions without
any involvement of the human driver. The safety of vehicle
operation is therefore the responsibility of the ADS, as the
human driver is out of the control loop. Misbehavior of the
automation may lead to life-threatening situations [56]. Of
course, this responsibility shift presumes valid usage of the
ADS. Therefore, the homologation process of such ADS has
to assure safe vehicle operation meaning that all relevant
hazards are considered and mitigated appropriately.

The functional safety of road vehicles is addressed com-
prehensively by the well-known automotive safety standard
ISO 26262 [47], which focuses on failures and faults of E/E
hardware components as well as methods for hazard analysis
and risk assessment to identify and quantify the former. The
emergence of ADAS made the complementary aspect of the
safety of the intended functionality (SOTIF) visible in the
automotive industry. The reliance of such systems on sensory
input from the open context opens the door to a variety of
hazardous situations even in the absense of classical hard-
ware faults. The issue of SOTIF is addressed in the standard
ISO/PAS 21448 [48], albeit only up to SAE Level 2.

B. VERIFICATION AND VALIDATION METHODS FOR
AUTOMATED VEHICLES
In order to adapt the automotive safety processes for the
homologation of higher SAE Levels the VVM project devel-
ops methods that facilitate this adaption process. For this,
VVM collaborates closely with its sister project SET Level,
whose focus is the development of a generic simulation
framework to be used for aforementioned V&V activities.
Both projects build upon results of the PEGASUS project,
which laid the ground work for scenario-based testing of
highly automated vehicles (SAE Level ≥ 3). The ultimate
goal of VVM is to develop methods and processes that sup-
port a safety argument for the homologation of AVs at SAE
Level 4 and 5. For exemplary application and proof of con-
cept, the project focuses on the use case ‘urban intersection’.

C. CONTRIBUTION OF THE CRITICALITY ANALYSIS
The ISO/PAS 21448 recommends to evaluate the system and
its components on unknown hazardous scenarios in the late
testing phase (upper-right arm of the V-model), but does
not provide a method for identification these unknown haz-
ardous scenarios. For automated vehicles operating in the
open context of the traffic world, the set of influencing fac-
tors triggering these unknown hazardous scenarios can be
arbitrarily large. Finding these influencing factors is a hard
task for rule-based systems, but even harder for systems that
incorporate machine learning components. The contribution
of the criticality analysis is to identify relevant influencing
factors for automated vehicles, called criticality phenomena,
even before the concept phase (upper-left arm of theV-model)
through a systematic analysis of the structure of the open
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context. The criticality analysis can be understood as a hazard
analysis and risk assessment where the system under consid-
eration is the traffic system in general, and not a concretely
defined item. It therefore addresses a whole class of products,
that is automated vehicles, instead of a single one. Its results
can then be used as a basis for a verification and validation
strategy for any product of that class, in particular, to set up a
coherent safety argumentation well in advance of testing.

A criticality analysis is expected to be performed by stan-
dardization boards and certification bodies in order to gain
advanced insights into the emergence of criticality phenom-
ena for automated vehicles. Obtaining such knowledge is a
preparatory step for defining a rigorous homologation pro-
cess. The criticality analysis also addresses corporate and
scientific accident researches, as it extends conventional acci-
dent research by adding considerable predictive power. This
is especially useful when designing an AVs safety concept.

III. HIGH LEVEL GOALS
The overarching analysis goal is the unveiling of how critical-
ity emerges in traffic, generally, and for automated vehicles
in particular. For this, we first introduce the term criticality
together with several explanatory remarks.
Definition 1 (Criticality): Criticality (of a traffic situation)

is the combined risk of the involved actors when the traffic
situation is continued.
Remark 1 (Criticality):

(i) In order to determine criticality, probabilities and types
of harm, dynamical and behavioral models and actions
restrictions of the involved actors are taken into account.

(ii) The time-horizon of criticality of a situation is bound by
the fulfillment of the intentions of the involved actors.

(iii) Criticality is inversely correlated with the amount of
(sequences of) actions to avoid harm that are available
to the involved actors.

While a traffic situation refers to a particular point in time,
a scenario describes an evolution over time, cf. subsubsec-
tion V-C1. Hence, the definition of criticality can be extended
to scenarios by aggregating the criticality of a time sequence
of traffic situations. For example, using the maximum or an
average over a discrete number of time steps. Note that, for
criticality, the system of interest is not a concrete automated
vehicle, but the traffic system as a whole. This allows the
criticality analysis to derive more universal statements that
can be employed in a downstream safety process. We do,
however, define a minimal set of high level assumptions
on such generic systems for which we analyze criticality.
Specifically, we assume that they

1) are regular vehicles found in urban traffic and
2) have a functional sense-plan-act architecture where

a) the sense-part relies on a set of vehicle sensors
(e.g. radar, camera, lidar) and

b) the plan-part pursues safety and performance
goals, adhering to rules and norm behavior.

Based on the above definition of criticality, we propose a
break down into six high level goals in order to accomplish
the analytical examination of criticality.
(G1) Extract criticality phenomena, i.e. observations of traf-

fic that are associated with increased criticality.
(G2) Deliver explanations of the criticality phenomena by

analyzing the possible underlying causalities.
(G3) Derive a structuring of the open context according to

these causalities.
(G4) Construct a catalog of abstract scenarios based on the

classification, including representative instances.
(G5) Find an adequate level of abstraction for the criticality

phenomena, explanations and scenarios.
(G6) Achieve a convergence towards a manageable set of

criticality phenomena.
Figure 2 gives an overview of the dependencies between

the high level goals and their artifacts.

FIGURE 2. Simple graphic representation of the relations between the
high level artifacts of the criticality analysis.

Initially, the analyst is confronted with an explicit or
implicit model of the highly unstructured traffic world [68].
The state space spanned by this model contains a critical
subspace. The actual shapes of the critical subspaces can
only be made visible by measuring. Such a process is an
approximation using explicit or implicit criticality surrogates,
e.g. human judgment or computable criticality metrics.

Criticality phenomena (G1, cf. Definition 2) should cover
a sufficient part of the critical subspace of the real world, i.e.
be indicative of criticality. The quality of this approximation
depends on the validity of the employed model and metrics.
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Canonically, each phenomenon represents a scenario class,
namely those inwhich the phenomenon is present. As tomoti-
vate why the criticality analysis needs to deliver an in-depth
explanation of the identified phenomena, consider a scenario
catalog on a phenomenological basis. This catalogmay not be
enough in terms of sufficiency for a safety argumentation: the
mere presence of a criticality phenomenon is not necessarily
the essence of the criticality in a scenario. For example,
the presence of an occluded pedestrian may be uncritical for
scenarios where the pedestrian has no physical possibility to
enter the driving lane. There may be other – possibly uniden-
tified – criticality phenomena present, e.g. a wet road surface,
that lead to an increase in criticality. Albeit this insufficiency,
a phenomenological analysis represents a meaningful starting
point for subsequent deeper analyses.

We note that each criticality phenomenon has a set of
underlying structural relations that lead to an increase in
criticality. Those causal relations (G2) refer to a set of state-
ments, partially ordered, such that validity of the preceding
statements is plausibly causal for a subsequent one. Such
relations can similarly construct scenario classes, and capture
the core concept more precisely. Continuing the previous
example, there exists a synergistic relation between the phe-
nomena ‘occlusion’ and ‘road accessibility’. This leads to a
more refined scenario classification, as scenarios that do not
include the identified causal relations can be excluded.

Once sufficiently many plausible causal relations are iden-
tified, the open context can be structured along the set of all
causal relations for all phenomena (G3). For example, one
can derive a joint set of all causal relations for all phenomena
which then allows to identify even more complex interrela-
tions between phenomena.

Based on this identified structure, the scenario space can
be classified into a finite scenario catalog (G4). This involves
finding a solution to the problem of representativeness: a sam-
ple shall be a sufficient surrogate for the set of all scenarios
of that class.

Identifying criticality phenomena and their causal rela-
tions requires an adequate level of abstraction (G5). The
need for abstraction becomes evident when identifying crit-
icality phenomena in an expert-based approach: one will
inherently rely on abstraction to ensure the finiteness of the
list. Note that its abstraction level may be too generic to
derive useful statements–‘using a road is associated with
criticality’–or too concrete to be useful in a safety case–
‘using the roundabout Place Charles de Gaulle, Paris at
midnight together with two vehicles is associated with
criticality’.

Finally, the method shall converge towards a finite and
manageable set of phenomena, causal relations and scenarios
(G6). The results shall adhere to certain quality requirements,
for example, with respect to their explanatory depth.

IV. BASIC CONCEPT
In this paper, we propose a methodical criticality analysis
that accomplishes the goals (G1)-(G6) and produces the

FIGURE 3. Basic concept of the criticality analysis: Pick a criticality
phenomenon - Improve understanding of phenomenon - Go to next
phenomenon.

introduced artifacts. The basic concept of the criticality anal-
ysis, as depicted by Figure 3 and presented in the following,
will be explained in-depth in section V.

The basic concept of the criticality analysis accord-
ing to Figure 3 can be summarized as: Pick a criticality
phenomenon-Improve understanding of phenomenon-Go to
next phenomenon. Let us elaborate on this three-step-process.

a: PICK A CRITICALITY PHENOMENON
The criticality analysis starts with extracting phenomena that
are allegedly associated with increased criticality from the
initial information basis, which is the union of all available
information about the domain of interest. Within this publi-
cation, we are examining the urban traffic domain. Extrac-
tion of phenomena is a two-stranded process: a criticality
phenomenon can be derived from expert-knowledge such
as existing ontologies, approval catalogs or interviews with
domain experts, e.g. accident researchers, traffic psycholo-
gists and jurists, or through analysis of related data, e.g. acci-
dent data bases, under the use of appropriate metrics. Before
investigating the phenomenon further, we need to establish its
relevance for AVs w.r.t. criticality. Expert-based phenomena
need to be supplemented with data and data-based phenom-
ena need to be infused with semantics.

b: IMPROVE UNDERSTANDING OF PHENOMENON
If a criticality phenomenon is deemed relevant, the goal is to
improve our understanding of the phenomenon by explain-
ing the underlying causal relation. In particular, we want
to build a plausible causal model of how exactly this phe-
nomenon increases criticality. First, an initial hypothesized
causal relation explaining the considered phenomenon is
specified by an expert. Evidence for the plausibility of the
alleged causal relation is gathered using empirical analyses.
Iterative learning, based on extending the data basis and
continuously updating the ontology, employed metrics and
simulation models, leads to an increasingly refined hypoth-
esis supported by accumulating data. If the evidence for the
causal relation is statistically sufficient for the ensuing V&V
process, it is accepted as a plausible explanation for the
phenomenon.
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FIGURE 4. Overview of the procedure of the criticality analysis. It consists of three branches that interact with each other: the method
branch (cf. subsection V-A), the information branch (cf. subsection V-B) and the scenario branch (cf. subsection V-C).

c: GO TO NEXT PHENOMENON
For the criticality analysis to be effective in practice, we need
to establish its convergence as a process. Convergence fol-
lows from two fundamental assumptions:

(A1) The number of relevant criticality phenomena is lim-
ited and manageable.

(A2) The relevant criticality phenomena leave traces in a
growing information basis.

Assumption (A1) is justified by the observation that,
although human drivers have limited driving skills in terms
of perception, planning and actuation, they manage to operate
reasonably safe in most situations. The advantage of human
drivers is their ability to recognize abstract classes of danger,
i.e. criticality phenomena, and adapt their driving behavior
accordingly. Given the limitations of human consciousness,
the number of relevant criticality phenomena cannot be exces-
sively large, if the level of abstraction used to represent the
phenomena is chosen adequately. As the relevant criticality
phenomena do exist in human consciousness on some level,
it is likely that they can be identified using an ever-growing
information basis comprised of all different kinds of data
recorded with various sensor technologies. Even if relevant

phenomena for AVs are different than for humans, they will
leave traces once data for automated driving keeps piling up,
therefore justifying assumption (A2).

d: CONVERGENCE
Based on the fundamental assumptions (A1) and (A2),
the identification of criticality phenomena is expected to con-
verge towards a manageable list of relevant phenomena for
automated driving, thus giving structure to the open context.
This process is facilitated by the steps of the criticality anal-
ysis and their iterative application. In particular, the informa-
tion basis is expected to increasingly contain data from AVs
in field operational tests. Since the impact of AVs on human
traffic, i.e. the emergence of mixed traffic, may have pro-
found consequences on the traffic structure, the ever-growing
information basis needs to be periodically checked for new
criticality phenomena and their relevance to traffic.

V. CRITICALITY ANALYSIS METHOD
This section outlines the process of the criticality analysis,
as depicted in the schematic diagram of Figure 4. The basic
concept, as introduced in section IV, is expanded into three
branches in order to achieve the high-level goals (G1)-(G6)
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from section III: method branch, information branch and sce-
nario branch. After a brief introduction to the three branches,
the following subsections V-A, V-B and V-C explore the
respective branches in detail.

e: METHOD BRANCH
As a more detailed version of the basic concept depicted in
Figure 3, this branch is the backbone of the criticality anal-
ysis. Essentially, we delineate the process from identifica-
tion of criticality phenomena over uncovering the underlying
causal relations to gathering evidence for their plausibility.
Additionally, a subsequent abstraction and refinement loop
enables the method to find the fitting level of abstraction
for the hypothesized causal relation. All these process steps
require input from the information basis, as indicated by
the input arrows (light-gray), and may trigger a knowledge
or data acquisition. The main tool to generate structured
knowledge from the data basis is data analysis, for which
we combine criticality metrics with methods from statistical
analysis and machine learning. Finally, a catalogization step
integrates new artifacts into the information basis.

f: INFORMATION BRANCH
This branch describes the management of information - i.e.
knowledge and data - for the criticality analysis and is
depicted by the lower part of Figure 4. The center of the
information branch is the information basis, which we divide
into a knowledge and a data basis. The information branch
features two process steps: a knowledge acquisition step that
can be triggered by the method branch and feeds the knowl-
edge basis and a data acquisition step that can be triggered by
both other strands and feeds the data basis. All process steps
of the criticality analysis located outside of the information
branch require interaction with the information basis on some
level, as indicated by the input and output arrows (light-gray
for knowledge and dark-gray for data).

g: SCENARIO BRANCH
The scenario branch describes how scenarios, being the sub-
strate of scenario-based verification and validation, are used
within the criticality analysis. For this, we distinguish three
process steps: Scenario classification derives abstract classes
of scenarios based on the results of the method branch. Sce-
nario instantiation deals with the derivation of more con-
crete scenarios based on the abstract scenario description,
which is required for data acquisition and representative
identification. The execution of a scenario – e.g. in simula-
tion – usually requires this step to obtain a logical or even
a concrete scenario as an input. Finally, scenario catalogiza-
tion builds a catalog of critical scenarios that adequately
cover all the relevant criticality phenomena and their causal
relations.

Subsequently, we detail all branches, using the phe-
nomenon ‘occlusion’ and its related artifacts as a running
example.

A. METHOD BRANCH
The method branch of the criticality analysis, as depicted
by Figure 4, is essentially a more detailed version of the
basic concept. In the following, we will provide details on the
process steps of the method branch. Note that the criticality
analysis method operates on the so called criticality analysis
domain, which defines the search space of the analysis.

1) IDENTIFICATION OF CRITICALITY PHENOMENA
A criticality analysis starts with the identification of artifacts
associated with criticality, so-called criticality phenomena.
Definition 2 (Criticality Phenomenon): A criticality phe-

nomenon CP is a concrete influencing factor in a scenario
(or a combination thereof) which is associated with increased
criticality.
Remark 2 (Criticality Phenomena): Criticality phenom-

ena therefore represent classes of danger.
In our running example, we identify the criticality phe-

nomenon CPocc = ‘occlusion’. Per definition, criticality phe-
nomena are related to criticality by association. As to make
this association visible, we use criticality properties.
Definition 3 (Criticality Property): Given a temporal

logic L, a criticality property ϕ ∈ L is a temporal sentence
arguing over at least one criticality metric.

For example, ϕTTC = ♦TTC < 0.5 ∈ LTL is a linear
temporal logic sentence over the Time-To-Collision (TTC)
metric [46]. Semantically, it states that at some point in time
the TTC falls below 0.5 seconds.
Definition 4 (Scenario Set of a Criticality Phenomenon):

Sc(CP) = {S ∈ SC | CP present in S}, where SC is the set of
all possible scenarios.

The exemplary phenomenon CPocc thus induces the set of
all scenarios in which an occlusion is present: Sc(CPocc).
Definition 5 (Satisfaction Relation for Scenarios): For a

set of scenarios Sc, a criticality property ϕ and an extent
σ ∈ [0, 1], Sc |Hσ ϕ iff. ∀ S ∈ Sc. S |Hσ ϕ.
For the definition of S |Hσ ϕ, we rely on the temporal

logic to supply an adequate semantics over the trace of S
regarding the extent of satisfaction σ . The simple criticality
property ϕTTC is satisfied, under LTL semantics, by all sce-
narios whose traces eventually reach a point in time where
the Time-To-Collision falls below 0.5 seconds. Additionally,
we introduced the extent of association σ in order to quantify
the association of phenomena to criticality. In our example,
due to the fact that we have chosen a Boolean logic, the extent
of satisfaction σ is 1 for the aforementioned set of scenarios,
and 0 otherwise. As to instantiate extents, we can make use of
concepts such as vagueness – e.g. through fuzzy logics [89] –
and uncertainty – e.g. through probabilistic logics [44].
Definition 6 (Satisfaction Relation for a Criticality Phe-

nomenon): For a criticality phenomenon CP, a criticality
property ϕ and an extent σ ∈ [0, 1], CP |Hσ ϕ iff
Sc(CP) |Hσ ϕ.
Hence, a criticality phenomenon satisfies a criticality prop-

erty if and only if all its induced scenarios exhibit this
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property. In our running example, CPocc |H1 ϕTTC exactly
if all scenarios containing an occlusion having a Time-
To-Collision of less than 0.5 seconds at some point. Obvi-
ously, this relation does not hold – certainly, there exist
scenarios with occlusion and a higher Time-To-Collision.
At this point, the extent σ can help to quantify the degree
of the association to allow a more fine-grained depiction of
criticality.

After having semi-formally defined the foundations of crit-
icality phenomena, we turn towards the process of identifying
such factors. We propose the following work-flow:

(1) First, acquire and structure knowledge. This includes
searching, selecting and rating various available sources.
More details on the acquisition of information can be
found in subsubsection V-B2.

(2) Search the available knowledge basis for observa-
tions associated with criticality. This includes knowl-
edge from domain experts, research and development
projects, existing guidelines and laws as well as anec-
dotes and experiences. If the available knowledge does
not adequately cover the entire criticality analysis
domain, trigger a knowledge acquisition step.

(3) Initially, describe each criticality phenomenon using the
ontological model depicted by Figure 13. This includes
potentially interesting abstractions and concretizations,
as well as their classification. In order to establish inter-
connectedness, we recommend denoting the relations to
other artifacts and potential synergies, e.g. through tags.

(4) Gather empirical evidence from the data basis in order
to estimate the relevance of the phenomena described
in (3) for further considerations and to establish confi-
dence in the criticality association. Readjust the level of
abstraction, distinguished concretizations and ontologi-
cal classification according to the available evidence.

After these steps have been carried out by a group of domain
experts, the structured results, e.g. in form of a table or
database, form the basis for all subsequent considerations.

As an example, we consider CPocc and its concretizations.
Initially, we identified occlusion itself at the highest level of
abstraction and denoted seven distinguished concretizations,
as shown by Table 1. Whether a concretization is listed or
not depends on whether its qualitative effect on criticality of
traffic is hypothesized to be characteristically different from
the others. Note that this initial identification may be updated
iteratively during the course of the analysis.

Searching accident databases, such as GIDAS [64], for
these different types of occlusion can give empirical evidence
that occlusions are indeed relevant phenomena, at least for
human drivers. Depending on the sensor setup, occlusions
may be relevant for AVs as well. Note that we do not make
assumptions on a specific AV realization during the analysis.
As we are at the beginning of a criticality analysis, our list of
causal relations is currently empty and as such, we determine
that we can proceed to the next step of finding an underlying
causal relation explaining the phenomenon of occlusion.

FIGURE 5. An exemplary causal relation.

2) PROPOSAL OF CAUSAL RELATION AND HYPOTHESES
In order to structure the open context of the traffic world
according to the emergence of criticality, the first step of the
analysis establishes an associative link between the relevant
phenomena and criticality. Now, the goal is to infuse those
observations with explanations that give plausible reasons for
the causal relation between the phenomenon and criticality.
To this end, we pick a previously identified phenomenon and
improve our understanding of it by exploring the question
‘how exactly does this phenomenon influence criticality?’.

From a formal point of view, we can imagine a causal
relation as a network of phenomena where each connection
between phenomena represents a plausible cause-and-effect
relationship. Note that one causal relation might explain
several criticality phenomena at the same time, leading to
a condensation of artifacts. One method to represent causal
relations is the formalism of directed acyclic graphs (DAGs)
[65], consisting of nodes that are connected by unidirectional
edges without producing circularity. Such causal graphs are
employed e.g. in empirical research to explicitly model and
communicate assumptions about the world.5 When designing
a study according to a causal graph, those explicit assump-
tions then allow to control for confounders in a subsequent
data analysis. Thus, such causal graphs enable a better
approximation when analyzing the causal effect. Addition-
ally, they allow to re-use existing knowledge about other
relations that may have already been established.

Due to those advantages, this well-established formalism
for specifying and analyzing complex causal relations will
be employed for our purposes. Mapping the causal graph
terminology to the criticality analysis, nodes represent vari-
ables that can be measured in a scenario, including criticality
phenomena, and edges correspond to plausible causal impli-
cations between these variables. Thus, we define the proposed
causal relation as a directed6 acyclic graph as following:
Definition 7 (Causal Relation): A causal relation CR =

(P,E) is a graph where P is the set of nodes – variables
described by propositions on traffic scenarios – and E ⊆
P×P is the set of edges – causal links between the variables.
The referenced variables of the nodes can be defined

through the ontological basis as detailed out in subsection V-
B. A simple causal relation is shown by Figure 5. The con-
text variable is causal for a criticality phenomenon and two

5Tools like DAGitty can be used for the analysis of causal graphs [76].
6Note that the assumption of acyclicity may not be justified for all vari-

ables – think of two traffic participants iteratively influencing each other with
their driving behavior. However, our goal here is not to model in detail all
circular implications between phenomena, but rather to model the essential
paths from a phenomenon to criticality.

18022 VOLUME 9, 2021



C. Neurohr et al.: Criticality Analysis for the Verification and Validation of Automated Vehicles

TABLE 1. Tabular specification of the phenomenon ‘occlusion’, including some of its concretizations.

variables v1, v2 which in turn influence a criticality metric. If
we aim to identify the causal effect of the exposure variable
(criticality phenomenon) on the outcome (criticality metric)
appropriately, we need to take care of the confounding vari-
ables context and v1.
Continuing the running example, we postulate a causal

relation CRstat−occ−tp for a stationary occlusion of a traffic
participant, CPstat−occ−tp, as depicted by Figure 6. Note that
CPstat−occ−tp is an concretization of CPocc, but not necessar-
ily a strict abstraction of any other concretization listed in
Table 1 due to the occlusion being stationary.
For easier depiction of the connections between criticality

phenomena, causal relations and scenarios, we semi-formally
introduce the following relations. Analogously to criticality
phenomena, it is reasonable to define the set of scenarios
induced by a causal relation.
Definition 8 (Scenario Set of a Causal Relation): Sc(CR)
= {S ∈ SC | CR present in S}, where SC is the set of all
possible scenarios.

For occlusion, SC(CRstat−occ−tp) is, simply put, the set of
all scenarios where the static occlusion influenced the partici-
pant’s perception and subsequently their behavior which lead
to an increase in the measured criticality.

As we are interested in whether the proposed causal rela-
tions explains the criticality induced by the phenomena,
we are defining the explanation relation `ρ over both sce-
narios and criticality phenomena.
Definition 9 (Explanation Relation for Scenarios): For a

causal relation CR, a set of scenarios Sc, a criticality property
ϕ, an extent ρ and an association Sc |Hσ ϕ, CR `ρ Sc iff CR
explains the association Sc |Hσ ϕ to the extent ρ.
Definition 10 (Explanation Relation for a Criticality Phe-

nomenon): For a causal relationCR, a criticality phenomenon
CP, a criticality property ϕ, an extent ρ ∈ [0, 1] and an
association CP |Hσ ϕ, CR `ρ CP iff CR explains the
criticality association of CP |Hσ ϕ to the extent ρ.

In our running example, we then examine whether the
explanation relation CRstat−occ−tp `ρ CPstat−occ−tp holds to
an acceptable extent ρ. The analysis of the extent is subject
to the later presented plausibilization methods.

After identifying a possible causal relation CR, a hypoth-
esis H over CR needs to be postulated for analyzing the
plausibility of the causal relation.7

7For the postulation of such a hypothesis, well-understood scientific
requirements, such as testability, shall be followed [71]

Definition 11 (Hypothesis over a Causal Relation): A
hypothesis H over a causal relation CR, a criticality phe-
nomenon CP and an extent ρ, for which supposedly CR `ρ
CP holds, is defined as H = (CR, ρ,CP, S) where S is a set
of additional statements over CR, ρ and CP.

The set of additional statements S can, for example, con-
tain information about the proposed strength and confidence
of the causal relation. In our running example, we define
Hstat−occ−tp = (CRstat−occ−tp, 1,CPstat−occ−tp, ‘holds for all
scenarios with one occluded tp’).

3) PLAUSIBILIZATION OF CAUSAL RELATIONS
a: ESTABLISHING PLAUSIBILITY
The plausibilization of hypotheses and causal relations car-
ries much of the weight of the method branch. In order to
check whether a causal relation adequately explains how a
phenomenon influences criticality, we have to gather evi-
dence that supports the corresponding hypothesis H . Plau-
sibilization of CR means that, for each alleged causal link
e = (A,B) ∈ E , we provide evidence using either deductive
or inductive reasoning.

If for an edge e = (A,B) ∈ E , there exists a possible line
of deductive reasoning as to why A is plausibly causal for
B, this possibility should be explored foremost. Of course,
this highly depends on the nature of the phenomena A and
B. Again, as an example, we consider the causal relation
CRstat−occ−tp from Figure 6. For many edges in this DAG,
convincing lines of deductive reasoning exist such as (‘Exis-
tence of ego’,‘Start position of ego’) and (‘Context’,‘Target
speed of ego’). Deductive reasoning works particularly well
whenever B clearly is dependent on A, or B is a subclass of
A. Of course, if more details are required on how the relation
actually works, this must be researched additionally.

If for an edge e = (A,B) ∈ E a deductive line of reasoning
cannot be followed directly, we need to gather empirical
evidences for e on a representative set of data, which can
be generalized using inductive arguments. As an example,
consider the edge (‘average degree of occlusion of tp for
ego’, ‘Non-existence of representation of tp in world model
of ego’). In principle, various types of evidence can be used
in this step such as observational data from field operational
tests, stationary traffic measurements or even driving simula-
tor studies. If insufficient data is available, a data acquisition
step may need to be triggered. However, in order to infer
causality for an edge e = (A,B), more rigorous evidence
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FIGURE 6. Causal relation CRstat−occ−tp, represented as a DAG, connecting the criticality phenomenon CPstat−occ−tp
to criticality measured via conditional required acceleration (areq,cond). Unobserved variables are gray and
independent variables are orange. The exposure variable ‘occlusion’ is marked green. The outcome variable
‘max areq,cond(ego)’ is marked blue.

might be required. This poses a problem since for hypotheses
about the development of criticality in traffic, randomized
controlled trials are not only unethical (due to conjecturing
about the causal relation behind potentially life-threatening
events) but also impossible to conduct properly due to the
randomness inherent to the open context. However, this might
be resolved using a combination of high-fidelity simulation
environments and statistical hypothesis testing.

Therefore, plausibilization of causal relations requires the
following with regard to criticality metrics:
• Employingmetrics thatmake criticalitymeasurable. The
validity of the employed criticality metrics is a crucial
factor, c.f. subsubsection V-A6.

• Choosing the right criticality metric for the hypothesis
at hand. There exist a myriad of available metrics and
depending on the causal relation a certain metric may be
required to make that effect visible.

• Criticality metrics are not evaluated on hypotheses or
causal relations, but on scenarios. Hence, if we employ
inductive reasoning, to test the hypothesis, we need to
examine the alleged causal relation for a scenario set.

b: ESTIMATING CAUSAL EFFECTS
One possibility of generating evidence for causal rela-
tions and, in particular inductive reasoning, is to employ
the framework of statistical hypothesis testing which is a

methodical pillar in various empirical sciences such as epi-
demiology [18]. As already indicated previously, conducting
randomized controlled trials in real traffic is infeasible due to
ethics and complexity. A potential solution to this dilemma is
the use of high-fidelity simulation environments. For exam-
ple, in a simulation, we can easily control the exposure (e.g.
occlusion), randomize the confounders and measure the asso-
ciated outcome (e.g. mean difference in measured criticality).

In a first step for the estimation of causal effects,
we map the terminology used for statistical experimenta-
tion to the terminology of scenario-based verification and
validation:
• Population: The set of all possible scenarios, or a certain
subset for which we want to make statements about its
criticality. Eventually, we are able to infer criticality
statements for the set of all scenarios.

• Sample: A set of scenarios drawn from the population.
• Representative sample: A set that represents the features
of the whole population well.

• Variable: Features that can occur in a scenario, e.g. the
type of humidity or coefficient of friction.
– Independent variable: A scenario feature of a sce-

nario that the experimenters can control.
– Dependent variable: A scenario feature whose out-

come is of interest. For us, this is the criticality as
measured by some criticality metric.
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– Confounding variable: A scenario feature that
influences the input parameters and criticality.

– Unobserved variable: A scenario feature that is not
measured in the experiment. For example, if during
a real world drive humidity is not measured, then
humidity is an unobserved variable.

We can then use this mapped terminology to outline a
general strategy for the estimation of a causal effect. In our
running example, we use the following steps in order to
generate evidence for the causal link between the criticality
phenomenon CPstat−occ−tp and criticality:

1) Model the assumptions of the experiment using a causal
graph; this has been done in Figure 6.

2) Identify all confounding variables through graph anal-
ysis. For CRstat−occ−tp one minimal sufficient adjust-
ment set consists of the variables from Figure 6 that are
marked in orange. These confounders influence both
the exposure as well as the outcome variable.

3) Design the experiment to observe the effect from expo-
sure to outcome. For our example, we plan to con-
duct a simulation-based observation of all previously
identified confounding variables, whether an occlusion
occurred and the criticality metric areq,cond.

4) Conduct the experiment. For this, we can use a proba-
bilistic simulation to sample representatively from the
population of all scenarios. We measure the variables
previously mentioned and store those measurements.
Note that it is essential for the identified variables to
be measurable on some scale. More precisely, we need
to be able to formulate properties and a degree of
satisfaction similar to Definitions 3 and 5. Otherwise,
we cannot derive useful statements with regards to the
plausibility of the causal relation and effect size.

5) Finally, we are able to apply methods from the area
of data analysis, as described in subsubsection V-A7.
These include, for example, methods from descriptive
statistics, such as statistical hypothesis testing, and
causal estimation methods by controlling for the iden-
tified confounders and fitting a regression model to the
data in order to estimate the effect size [69].

Note that due to the high possibility of encountering unob-
served confounders in the open context, methods need to be
in place to tackle unmeasured variables. We will investigate
this problem in future research.

4) UPDATE HYPOTHESIS
If, after investigating a causal link either deductively or
inductively, the available evidence does not sufficiently sup-
port the causal link, the hypothesis for the causal rela-
tion may need to be updated or even refused. Possible
updates for hypothesis adjustment include the introduc-
tion of additional edges and the modification of existing
edges by means of abstraction and refinement. For exam-
ple, CRstat−occ−tp went through various iterations before its
depicted form.

5) ABSTRACTION AND REFINEMENT
Besides generating evidence for an established hypothesis,
another key concept in handling the open context is the
identification of a meaningful level of abstraction for criti-
cality phenomena and causal relations. Specifically, we need
a level that is concrete enough to enable an identification of
mitigation strategies for critical situations, but is also abstract
enough for the artifacts to be manageable in size. Figure 7
shows two causal relations being connected via abstraction.

FIGURE 7. A refinement of an abstract causal relation into the more
concrete causal relation introduced in Figure 5.

In formal methods, abstraction has long been employed
to tackle large and even infinite state spaces [6]. Essen-
tially, instead of analyzing the concrete model, the analy-
sis is run on a smaller and more abstract model. Ideally,
such an abstraction is constructed automatically, e.g. through
counterexample-guided abstraction refinement [16].

a: ABSTRACTION
Abstraction is the process of bundling a set of criticality
phenomena and causal relations into a single criticality phe-
nomenon and causal relation while sufficiently preserving
the explanatory strengths. Formally, assume we are given a
criticality property ϕ and a set C of quadruples of associa-
tion extents, criticality phenomena, explanatory strengths and
their causal relations with ∀ (σ,CP, ρ,CR) ∈ C. CP |Hσ
ϕ ∧ CR `ρ CP. We are then interested whether there exist
a more abstract phenomenon CP′, criticality association σ ′,
causal relation CR′ and explanatory extent ρ′ for which all
four abstraction conditions hold for all (σ,CP, ρ,CR) ∈ C:
(AC1) Sc(CP′) ⊇ Sc(CP) (Valid phenomenon abstraction)
(AC2) CR′ `ρ CP′ (Valid causal relation abstraction)
(AC3) CR′ `ρ′ CP, ρt < ρ′ ≤ ρ (Sufficiently preserved

causal explanation)
(AC4) CP′ |Hσ ′ ϕ, σt < σ ′ ≤ σ (Sufficiently preserved

criticality association)
where σt and ρt are acceptable lower thresholds for the
extent of the association resp. explanation of the abstract
phenomenon and causal relation. Thus, it is expected to lose
both associative as well as explanatory power through the
process of abstraction, but only up to a certain degree. If
abstractions become too generic, phenomena will only be
associatedweaklywith criticality and causal relations will not
explain the phenomena sufficiently. We denote any abstrac-
tion relation satisfying (AC1) to (AC4) over both the set of
criticality phenomena and causal relations by @.
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Let us examine the simple property ϕTTC = ♦ TTC <

0.5 s. The previously introduced phenomenon CPstat−occ−tp
is abstracted to CPocc′ = ‘there exists an entity that is not
perceived by ego’. The underlying causal relation explaining
occlusion, CRstat−occ−tp, is presented in Figure 6. It can be
abstracted to the causal relation Eocc′ = {(O not represented
in ego’s world model, Average speed of ego), (O not rep-
resented in ego’s world model, Average steering angle of
ego)}. Obviously, the phenomenon’s abstraction is valid in the
sense of (AC1): all scenarios with occlusion are an instance
of the perception not being able to perceive something, i.e.
Sc(CPstat−occ−tp) ⊆ Sc(CPocc′ ). It is also reasonable to
assume that CRocc′ `ρ CPocc′ due to the generality of the
explanation. Hence, (AC2) holds.

Subsequently, the question of the abstraction’s usefulness
arises naturally. For this, we examine (AC3) and (AC4): we
find that the causal relation CRocc′ is not sufficient to explain
the criticality of occlusion to a necessary depth. For instance,
it takes neither the type (e.g. a bicyclist versus a mosquito)
nor the proximity of the occluded object to the ego vehicle
(e.g. a few centimeters versus a few hundred meters) into
account. Therefore, and based on our threshold ρt for the
extent of the explanation, we find that the causal explanation
is not sufficiently preserved. Additionally, it is imaginable
that the criticality association CPstat−occ−tp |Hσ ϕ is not
preserved, i.e. CPocc′ 6|Hσ ϕ. This is due to the fact that
there were occluded objects in every single scenario that has
ever occurred, for example people in buildings, animals in
trees or simply rocks below the road’s surface. As stated
earlier, those objects are clearly causing a TTC less than 0.5s,
but the abstract phenomenon does not capture this relevancy
adequately. We thus can not expect to find a large statistical
association between such a generic unperceivability and ϕ.
Consequently, the abstract phenomenon does not preserve the
criticality association in the sense of (AC4). We conclude that
we have not yet produced a useful abstraction.

b: REFINEMENT
In case of over-abstraction, statements become too generic.
Refinement is a viable option to achieve a better explanatory
quality. We define refinement to be the process of creating a
set of more concrete criticality phenomena and causal rela-
tions given a criticality property ϕ, an association extent σ ,
an abstract criticality phenomenon CP, an extent ρ and a
causal relation CR with CP |Hσ ϕ∧CR `ρ CP. Analogously
to the abstraction process, we are then interested whether a
criticality association σ′ as well as a set of refined associa-
tions, criticality phenomena, explanatory strengths and causal
relations C exists, for which the four refinement conditions
holds for all (σ′ ,CP′ , ρ′ ,CR′ ) ∈ C:

(RC1) Sc(CP) ⊇ Sc(CP′ ) (Valid phenomenon refinement)
(RC2) CR′ `ρ′ CP′ (Valid causal relation refinement)
(RC3) (

⋃
(CP′ ,ρ′ ,CR′ )∈C CR′ ) `ρ′ CP, ρ ≤ ρ′ (Increased

causal explanation)
(RC4) CP′ |Hσ′ ϕ, σ ≤ σ′ (Increased criticality association)

FIGURE 8. The decision flow for determining the direction of refinement
or abstraction, given a set of artifacts C.

where
⋃

is the join operator over graphs, i.e. (V1,E1) ∪
(V2,E2) = (V1 ∪ V2,E1 ∪ E2). Analogously to abstraction,
we again denote any refinement relation by A.

As an example, let us consider the abstract phenomenon
CPdrive = ‘driving on a road’. It is associated with criticality
to some extent σ > 0 – but it does not provide a meaningful
insight into criticality. In the end, we cannot derive useful
safety principles or mitigation mechanisms from this, besides
the trivial principle of avoiding to drive at all. Thus, a refine-
ment to multiple more concrete phenomena, e.g. including
the phenomenon CPstat−occ−tp, will provide value in finding
more adequate strategies for criticality mitigation.

c: CHOOSING THE DIRECTION OF ABSTRACTION AND
REFINEMENT
At a given point in the analysis, it needs to be checkedwhether
an abstraction or refinement is advisable. Once the decision
is made, new artifacts need to be produced that satisfy the
abstraction and refinement conditions.

Starting with the question of the direction of abstraction
and refinement, it is important to note that the experts estab-
lishing the initial list of criticality phenomena have already
set an original level of abstraction. Hence, for a given phe-
nomenon CP that has a criticality association to some extent
σ , i.e. CP |Hσ ϕ, we need to decide whether σ is sufficient.
This can be done by means of a predetermined, desired
association extent σd , which is then checked against σ , i.e.
σd ≤ σ . The threshold for such an extent is to be determined
a-priori, answering the question to which level of detail criti-
cality shall be identified. Obviously, setting such a threshold
heavily relies on the downstream usage of the artifacts and
desired level of safety, involving complex societal and ethical
issues. For the criticality analysis, we assume that appropriate
discussions have been conducted, leading to σd . Similarly,
the extent of the desired explanatory power, ρd , needs to be
identified a-priori and checked against the current level of
explanation, ρ, i.e. checking ρd ≤ ρ.

As indicated by Figure 8, if one of the inequations is
violated, a refinement is advisable either for the phenomenon
or causal relation. This is due to the fact that criticality
association or explanatory strength has to be increased. Oth-
erwise, we conclude the artifacts to be sufficiently concrete.
We finally check if the phenomena list has grown too large,
implying that an abstraction may reduce complexity.

Once the direction of abstraction or refinement is deter-
mined, new artifacts for each of the three steps have to be cre-
ated. This process is presented in the following paragraphs.
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FIGURE 9. Schematic depiction of the counterexample-guided
abstraction refinement process for criticality phenomena. SC is the set of
all scenarios, Sc(CP) are scenarios with phenomenon CP present and
SCcex are counterexample scenarios not or only weakly associated with
criticality.

d: REFINE CP
Based on existing approaches, we propose a counterexample
guided abstraction refinement method [19], [22].

As shown in Figure 9, we initially note that CP 6|Hσ ϕ for
all σ ≥ σd , i.e. the current extent of association with critical-
ity is not sufficient. Hence, we can, e.g. through simulation,
identify a set of counterexample scenarios SCcex ⊆ {Sc ∈
Sc(CP) | @ σ ≥ σd . Sc |Hσ ϕ}. Those scenarios hence
partially contain the reasons for the abstract scenario’s weak
association with criticality. We are then left with two options:

1) Conclude that even a concretization of CP can not be
associated with well enough criticality and remove it
from the list, e.g. if Sc(CP) = SCcex .

2) Refine the criticality phenomenon to exclude those
counterexample scenarios, i.e. Sc(CP) \ SCcex .

We then use the new set of scenarios Sc(CP) \ SCcex =

Sc(CP′) to identify more concrete associations with critical-
ity. They induce a new phenomenon CP′ which is a refined
phenomenon with a greater criticality association, as a whole
class of scenarios with a low associative extent has been
excluded. In order to define CP′, we can, for example, learn,
e.g. through a classifier, new features for this set of induced
scenarios and possibly even refine it into multiple subclasses.

Continuing our running example, we previously argued
that CPocc may not satisfy a desired associative extent. We
can identify a class of counterexample scenarios where the
ego is driving straight and an occluded pedestrian walks
behind parked cars, but has no possibility of reaching the lane.
Here, criticality is not meaningfully increased. We can then
define CP′occ to be the conjunction of the seven concretiza-
tions of occlusion in table Table 1. The associative extent
of these phenomena can be experimentally or analytically
shown to be increased when compared to Sc(CPocc).

e: REFINE CR
Assume we are confronted with a phenomenon which is
explained plausibly albeit not concretely enough, the under-
lying causal relation needs to be refined, cf. Figure 7.
Similar to refining criticality phenomena, we can also

use counterexample guided abstraction refinement for causal
relations. Note that at this point in the process, it has been
established that CP |Hσ ϕ with some σ ≥ σd , but CR `ρ CP
holds only for ρ < ρd . Here, we are interested in refining
the explanations, i.e. finding counterexample scenarios
where the causal relation is not sufficient to explain the

FIGURE 10. Refinement of the causal relation of Figure 6. A node (gray) is
added stating that the absence of information is causal for occlusion to
be a criticality phenomenon.

increased criticality association of CP. We thus identify such
a scenario set SCcex ⊆ {Sc ∈ Sc(CP) | @ ρ ≥ ρd . Sc `ρ CR}
through e.g. simulation or a database search. Once counterex-
ample scenarios have been identified, we can refine by

1) adding nodes to CR or
2) adding edges to CR or
3) refining the variables of the nodes of CR.

One possibility is to use the ontology’s classifications and
relations for the refinement. Another option, as sketched in
[20], is to use machine learning techniques to derive new
explanatory statements over the counterexample scenarios.

Consider the exemplary causal relation CRstat−occ−tp of
Figure 6. Here, we may find that (Non-existence of repre-
sentation of tp in world model of ego, Average speed of ego)
may be a bottleneck in the explanation process. This means
that there exists a set of scenarios where the direct influence
of the non-existence in the world model cannot explain the
resulting average speed. As an illustration, we consider a
counterexample scenario Sccex with an occluded traffic par-
ticipant for which no representation is present in the world
model of ego. But in those scenarios, the ego has acquired
the knowledge that, due to the opaque object O, there is an
occluded area. It thus believes that there is a possibility of tp
existing behind O. The ego adapts its speed accordingly and
successfully mitigates a critical situation.

For the refinement of this counterexample, we use an
ontological approach. The ontology provides us with knowl-
edge about the perception chain, e.g. that faults in the fea-
ture extraction may result in their negligence in the scene
modeling and hence in an erroneous world model. In an
expert-based approach, we use this information to identify
that the criticality of the phenomenon CPstat−occ−tp is addi-
tionally dependent on whether the ego has the information
about the possibility of an occlusion. This is depicted by the
refined causal relation in Figure 10. Here, a node was added
stating that the non-existence of a representation of tp leads
to the ego not having information on the possibility that some
intersecting tp may exist. As the counterexample scenario
Sccex explicitly states that the ego has such information,
we have effectively excluded it from Sc(CRstat−occ−tp).

f: ABSTRACT C
Increasing the level of abstraction may be necessary in case
the number of concretizations grows too large. In this case,
we can merge phenomena that can be explained by the same
causal relations. For example, let us suppose that ‘occluded
traffic sign’ and ‘occluded traffic signal’ are both present in C
and their criticality explanation is ‘presence of an important
traffic rule can not be perceived by the ego’. We are then able
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to abstract ‘occluded traffic sign’ and ‘occluded traffic signal’
into ‘occluded traffic rule signalization’, as the extent of this
explanation was previously deemed as accepted.

An additional tool in the abstraction of traffic phenomena
is the usage of domain knowledge formalized by means of an
ontology, as presented in subsection V-B. Here, the hierarchy
provides an essential tool to enable abstraction also over
causal relations. In our running example, our ontology states
that pedestrians and bicyclists are subsets of vulnerable road
users. One option is then to merge those phenomena into a
new, abstract phenomenon ‘occluded vulnerable road user’.
Obviously, (AC1) to (AC4) need to be checked, e.g. through
a formal argument, simulation or data analysis.

6) CRITICALITY METRICS
In section IV we introduced a qualitative definition of crit-
icality in order to explain the basic concept of the criti-
cality analysis and its high level goals. Going into more
detail, in particular for the plausibilization of causal relations,
we argued that criticality needs to be measurable in order
to collect empirical evidences. The main tool for this are
criticality metrics. We already encountered some critical-
ity metrics in the beginning of this section, namely TTC
and areq,cond.
Definition 12 (Criticality Metric): A criticality metric is a

function, evaluated on a (discrete) set of measurements (in the
case of real-world data) or values generated by a simulation
engine (in the virtual case) with the goal to evaluate the
criticality of a traffic situation or scenario.

Thus, criticality metrics are excellent tools to assess
criticality, condensed into a single number. Depending on
the employed metrics and associated criticality thresholds,
the union of all measurements delivers a coverage of the
actual, unknown critical subspace, as depicted by Figure 1.
The choice of such metrics and thresholds, however, intro-
duces a significant bias into the criticality analysis. Subse-
quently, any measured criticality and classification based on
it is always to be seen relative to the employed metrics and
thresholds.

a: APPLICATIONS WITHIN THE CRITICALITY ANALYSIS
As depicted by Figure 4, criticality metrics are inherently
attached to the process step ‘Data Analysis’, but are employed
at various other occasions. Therefore, within the criticality
analysis, we identify the following applications for metrics:

(AP1) For plausibilization of causal relations (cf. sub-
subsection V-A3), we need to make criticality
measurable in order to gather empirical evidence.
Plausibilization can therefore trigger a data analysis
step. Note that each causal relation may require dif-
ferent criticalitymetrics in order tomeasure its effects
appropriately.

(AP2) In a data acquisition step (cf. paragraph V-B2.d),
to enlarge the available data basis by commissioning
real world drives, huge amounts of data are produced.

For the identification of critical scenarios, critical-
ity metrics can be applied either live for selective
data recording during recording or for data filtering
afterwards.

(AP3) More generally, criticality metrics can be used for
any kind of data analysis (cf. subsubsection V-A7)
to identify critical situations or scenarios in already
recorded data from stationary measurements, natu-
ralistic driving studies or accident databases. The
results of such an analyses provide evidence for the
relevance of phenomena, if they can be identified
within the data set.

(AP4) For scenario classification (cf. subsubsection V-C2)
it is of interest to label scenarios as critical or uncrit-
ical. This requires evaluating criticality metrics on
scenarios together with thresholds that enable such
a labeling.

(AP5) When optimization algorithms are used for sce-
nario instantiation (cf. subsubsection V-C3), critical-
ity metrics can be used as objective function [63].
This approach is particularly useful to identify critical
parameter combinations in a parameterized scenario
class.

(AP6) During the refinement process (cf. paragraph V-A5.d,
paragraph V-A5.e), criticality metrics enable us to
exclude scenarios with a low criticality and thus
refine criticality phenomena and causal relations.

(AP7) During the abstraction process (cf. paragraph V-
A5.f), criticality metrics allow to check whether the
extent of the criticality association and its explanation
has been decreased only by a tolerable level.

b: REQUIREMENTS ON CRITICALITY METRICS
When analyzing traffic in the real world or in a simulation
it is obvious that scenarios vary in several ways w.r.t. the
emergence of criticality. Besides the ranges and definitions of
the parameters describing the logical level of a scenario, these
parameters have a large impact on the associated hazards
and risks, e.g. harm done to passengers. Generally, criticality
metrics shall reflect the real criticality accurately as to get
an assessment of how safe or unsafe a traffic situation or
scenario is. While requirements on criticality metrics depend
on the desired application, we refer to the three requirements
defined by Junietz et al., which roughly cover the require-
ments imposed by the criticality analysis [51]. Depending on
the scope, other sources elicit slightly different requirements
[43]. Additional requirements on criticality metrics are likely
to be exhibited when executing a criticality analysis.

c: ANALYSIS, CALIBRATION AND ENGINEERING OF
CRITICALITY METRICS
As mentioned previously, there exist a myriad of critical-
ity metrics in the literature. One goal of the criticality
analysis is to analyze these metrics with respect to the previ-
ously referenced requirements and their applications (AP1)-
(AP7) within the criticality analysis. For an non-exhaustive
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overview on the literature, we consider the following classi-
fication of existing metrics with respect to their outputs:

• Time-Scale Metrics: Time-To-Collision (TTC) [46],
Time-To-Maneuver (TTM) [75], Time-To-React (TTR)
[75], [82], Time Headway (THW) [36], [49], Post-
Encroachment-Time (PET) [2], [66], Time-To-Closest-
Encounter (TTCE) [29]

• Distance-Scale Metrics:Headway (HW) [49], Distance-
To-Closest-Encounter (DTCE) [29]

• Motion-ScaleMetrics:Required (Longitudinal / Lateral)
Acceleration (areq) [49], [54]

• Ratio-Scale Metrics: Brake Threat Number (BTN),
Steer Threat Number (STN) [30]

• Probability-Scale Metrics: Crash Probability via Monte
Carlo methods [12], [31] [3], Crash Probability using
Stochastic Reachable Sets [4], Crash Probability by
Scoring Multiple Hypothesis [62]

• No-Scale Metrics: Minimum Driving Task Difficulty
Score [51], Potential Functions as Superposition of Scor-
ing Functions [50], [87]

While plausibilization (AP1) requires establishing what
is considered a meaningful effect size in our context, data
acquisition (AP2), data analysis (AP3), scenario classifi-
cation (AP4) and instantiation (AP5) as well as refinement
(AP6) and abstraction (AP7) rely on thresholds to determine
if a situation or scenario is considered critical. For example,
Junietz et al. [52] consider manually labeled critical scenarios
in order to learn binary classifiers. Our goal is to pick up
and extend existing approaches for the applications within the
criticality analysis. Based on these results, new metrics that
are well-suited for the criticality analysis can be developed
manually or learned artificially. This issue of calibration of
criticality metrics, however, remains as a challenge for future
research. In future work, we plan on investigating those issue
using nanoscopic traffic simulation software [43].

d: CRITICALITY METRICS FOR THE RUNNING EXAMPLE
In order to assess the plausibility of the exemplary phe-
nomenon CPocc, we simulated a logical scenario on an
urban intersection, as described in subsubsection V-B2. As
to identify whether criticality does increase when an occlu-
sion is present in the simulation, we employed a combined
a predictive, scaled variant of the Post-Encroachment-Time
(PET), based on [2], which we label Scaled Predictive-
Encroachment-Time (SPrET). Predictive approaches of the
PET have been proposed in earlier works [57], [61], but have
to our knowledge not been presented in a formalized way. The
SPrET is additionally combined with a variant of the required
acceleration areq [49] adapted for intersection scenarios rather
than car following scenarios.

First, we use a constant velocity model to assess whether
the projected paths tri(s, t) = vi(t)s + pi(t) of two traffic
participants with positions pi(t) and velocities vi(t), i = 1, 2,
do intersect at time t by solving tr1(s1, t) = tr2(s2, t) for s1

and s2. The SPrET at time t is then defined as

SPrET(t) =


(s1 + s2) · |s1 − s2|,

if ∃ s1, s2 > 0 : tr1(s1, t) = tr2(s2, t),
∞, otherwise.

(1)

Extending the definition to scenarios, the SPrET of a time
series T = (t0, . . . , tn) is defined as the minimum, i.e.
SPrET(T ) = mint∈T SPrET(t).
By definition, the SPrET predicts the Post-Encroachment-

Time (i.e. |s1 − s2|) under the assumption that all traffic
participants will follow a straight path defined by their current
velocity. Intuitively, this answers the question: how close will
the encounter of both traffic participants be if no one reacts
to the other? When the SPrET approaches zero, a change of
behavior should be considered by at least by of the actors.
Moreover, we scale the predicted value by the factor (s1+ s2)
to avoid over-estimating the criticality when the vehicles are
far away from the predicted intersection point. This allows us
to effectively model prediction uncertainty, which we assume
increases with the distance to the predicted intersection.

The SPrET addresses the temporal dimension of criticality,
i.e. the time gap between actors passing an intersection point,
but not the dynamical dimension. For this, we evaluate the
required deceleration for each actor once the SPrET falls
below a certain threshold. As to assess this, let pint =
tr1(s1, t) = tr2(s2, t) denote the predicted intersection point.
For each time t , we define the Conditional Required Acceler-
ation areq,cond in m/s2 as the deceleration that is required for
actor i = 1, 2 to stop in front of pint:

areq,cond(t, i)=

 ||
vi(t)2

2(pi(t)− pint)
||, if SPrET(t)<3s2,

0, otherwise.
(2)

The threshold value 3s2 has been chosen by the author’s
human judgment of criticality. Analogously to SPrET,
areq,cond of a time series T is defined as areq,cond(T , i) =
maxt∈T areq,cond(t, i).

The combination of both metrics is a useful criticality
surrogate in urban intersection scenarios, as it assesses two
important dimensions of criticality. Additionally, the predic-
tion does not rely on intersecting trajectories, i.e. predicted
collisions, over time in order deliver a meaningful value. This
avoids problems that arise for intersection scenarios as is the
case with a simple TTCmetric: when assuming straight paths
under constant velocity, if no collision will happen, the TTC
will be infinite even if the projected paths do intersect.

Figure 11 gives two example graphs for SPrET and areq,cond
measurements. In the first of these concrete instances of the
running example of Figure 16, the ego vehicle approaches
the intersection while the oncoming bicyclist is critically
occluded by parking vehicles. The bicyclist becomes visible
to the ego only shortly before entering the intersection area.
The ego vehicle cannot react sufficiently, as the areq,cond
spikes upwards at the end of the scenario. In the second
instance, the bicyclist is not occluded and the ego vehicle is
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FIGURE 11. SPrET and areq,cond over time for a critical occlusion (left) and an uncritical non-occlusion (right) scenario.

able to initiate an early reaction at around t = 7s. This is
indicated by a subsequent increase in SPrET.

7) DATA ANALYSIS
Data analysis is the main connection between the method and
information branch and creates new knowledge by means of
analyzing parts of the available data basis. Here, criticality
metrics present an important tool for the analysis of scenario
data. Details on the data basis can be found in subsection V-B.
As indicated in Figure 3, we use techniques from the fields

of statistical analysis and machine learning.
In order to derive valid statements from the results of

real world drives or simulation runs, methods from statisti-
cal analysis can be applied. Descriptive statistics is helpful
for expressing or summarizing certain features of a data
set. In particular, accident databases can be analyzed using
database functionality such as filtering for certain critical-
ity phenomena. However, to infer properties of a data set,
e.g. for the plausibilization of causal relations, we have
to employ methods from inferential statistics such as the
Kolmogorov-Smirnov test, Student’s t-test, analysis of vari-
ance and χ2-test. Moreover, we can conduct correlation anal-
yses between phenomena and criticality metrics, e.g. using
Spearman’s ρ. In this way, we can measure the sensitivity of
a criticality metric to a parameter and use the result for feature
selection when training regression models or classifiers.

On the side of supervised machine learning, we can use
data sets of criticality metrics evaluated on the parameter
space, e.g. of a logical scenario, to fit a regressionmodel. This
model can then be used to predict the value of the criticality
metric for unseen parameter combinations and lends itself as
objective function for optimization techniques. If thresholds
for criticality metrics are introduced, we can use such data to
fit classifiers for criticality. In case the experiment has been
designed according to a plausible causal graph, one can use
the regression model to estimate causal effects [38] – under
the assumption that confounding variables have been identi-
fied and controlled for. Finally, we can apply unsupervised
machine learning to different data sets, e.g. for clustering of
scenarios or anomaly detection in real drive data.

Optimally, the results from machine learning are inter-
preted and infused with expert knowledge and combined with

the results from other statistical analyses. The strength of
machine learning techniques, namely finding correlations and
fitting models using vast amounts of data, is enabled by a
growing data basis. However, in order to infer causality from
correlations it is mandatory to apply statistics diligently.

For our running example, we analyze the data gath-
ered by simulation, as described in subsubsection V-B2.
We evaluated the n = 1000 instantiations for SPrET and
areq,cond(ego). For SPrET, separating the data set into ‘no
occlusion’ (530 scenarios) and ‘occlusion’ (470 scenarios),
we obtainedmeans and standard deviations of 3.25 (±9.46)s2

and 2.75 (±8.74)s2, indicating a 15% decrease in SPrET and
therefore, a small increase in criticality. In order to verify the
effect of ‘occlusion’ we checked for differences between the
distributions using a two-sample Kolmogorov-Smirnov test
(D = 0.12, p < 0.05).
For the analysis of areq,cond(ego), in order to limit the

impact of highly-dynamical accident scenarios, we intro-
duced 9.81m/s2 as an upper bound for areq,cond(ego), a value
over-approximating the point of no return. Note that the ‘no
occlusion’ scenarios were not affected by this modification.
Based on this, we obtained means and standard deviations
of 1.10 (±0.75)m/s2 and 3.15 (±3.10)m/s2, i.e., on aver-
age in the modified sample, areq,cond(ego) was around 2.9
times higher for occlusion scenarios, indicating a very strong
increase in criticality. Again, we verified the effect using
a two-sample Kolmogorov-Smirnov test (D = 0.40, p <

10−35) and calculated Cohen’s d = 0.93. Conducting a cor-
relation analysis between variables and areq,cond(ego) using
Spearman’s ρ revealed several interesting significant (α =
10−9) correlations, as can be seen in Table 2. In particular,
the exposure variable ‘occlusion’ was significantly correlated
with the outcome variable areq,cond(ego) (ρ = −0.35, p <
10−29), which further substantiates the alleged causal
relation.

This initial data analysis point towards a statistically sig-
nificant effect of the criticality phenomenon ‘occlusion’ on
criticality, at least for the running example. In particular,
the effect of ‘occlusion’ on the temporal dimension, measured
with SPrET, is rather small. However, its effect on the dynam-
ical dimension, measured with areq,cond(ego), vastly increases
criticality and leads to accident scenarios. More experiments

18030 VOLUME 9, 2021



C. Neurohr et al.: Criticality Analysis for the Verification and Validation of Automated Vehicles

TABLE 2. Significant (α = 10−9) results of correlation analysis between
variables and areq,cond(ego) using Spearman’s ρ.

are required to confirm this effect and, eventually, to infer a
causal link between occlusion and criticality.

8) CATALOGIZATION
After examining the relation of a phenomenon to a criticality
property ϕ, the following artifacts have been produced:
• CP, σ s.t. CP |Hσ ϕ, the phenomenon associated to ϕ
• CR, ρ s.t. CR `ρ CP, the relation explaining CP
• H , the hypothesis for CR
• E , the evidences supporting H
• a description of the abstract scenario class Sc(CP)
• a description of the abstract scenario class Sc(CR)
• a set of scenario instantiations for these classes
• concrete simulation and measurement data
These artifacts will be cataloged to enable re-use and trace-

ability during and after the analysis. The following sections
consider, among other aspects, the storage and access of such
a catalog of method artifacts and scenarios.

B. INFORMATION BRANCH
The information branches supplies the method branch with
relevant information. For the analysis, we differentiate
between two categories of information: data and knowledge.
Knowledge, in this context, is understood to be general facts
about the world, whereas data represents concrete instances
of those facts. We can thus extract knowledge from data by
means of analyzing the relations of instances in the data –
an inherently inductive process. Additionally, knowledge is
generated from existing knowledge itself through deduction.
The access to such information provides the foundation to
identifying and substantiating relevant causal relations.

The handling of information is depicted in three steps:
Firstly, we lay the foundations of our information branch
approach by introducing ontologies, a key enabler in formal-
izing and reasoning over the available information.

Subsequently, we demonstrate the connection of the
method to the real world : it is addressed how relevant knowl-
edge about the traffic domain can be formalized, stored and
utilized as well as how data and knowledge about the real
world are incorporated into the method branch.

Lastly, we depict the generation, storage and usage of
the method-related information, i.e. the artifacts produced
during the criticality analysis. For this, meta-models for the
most common entities that occur during the analysis, e.g.
criticality phenomena, are introduced. Such models need to

be stored and conveniently accessed – both for machines
and humans – thus enabling consistent knowledge re-use and
even automated deduction throughout the process, especially
considering the iterative nature of the criticality analysis.

1) REPRESENTING INFORMATION THROUGH ONTOLOGIES
a: INTRODUCING ONTOLOGIES
Explicating information for storage, access, and reasoning
purposes is a central concept of the field of information sci-
ence. In this context, an ontology is a digital and formal tool
for such an explication process [42]. In a nutshell, for a given
domain, an ontology stores a representation of classified
concepts and entities as well as their properties and relations
to each other. Thus, it is a formal model of a given conceptu-
alization. Specifically, knowledge can be represented in terms
of universal axioms over the structured entities, which in turn
can be instantiated by measured or synthetic data. Ontologies
are capable of handling both knowledge (i.e. general facts)
and data (i.e. instances of those facts).

b: THEORETICAL AND TECHNICAL LIMITATIONS OF
ONTOLOGIES
Although ontologies can express a vast amount of knowledge,
there exist both theoretical and technical limitations to their
expressiveness. Firstly, a common realization of ontologies is
theWeb Ontology Language (OWL) 2, which is semantically
based on the description logic (DL) SROIQ. DLs are a
decidable fragment of first-order logic. Hence, in exchange
for computability, it is not possible to express all possibly
relevant facts. Besides the theoretical limitations, there exist
practical considerations: often, describing temporal or spatial
properties on a concrete level can become a tedious task when
using plain description logics. In practice, one can fall back
to abstract predicates, e.g. to the side of.

c: ONTOLOGIES IN THE CRITICALITY ANALYSIS
We identify two relevant ontological domains:

1) The automotive urban traffic domain, including con-
cepts such as vehicles, infrastructure, and weather.

2) The criticality analysis domain, including artifacts
from subsection V-A, e.g. criticality phenomena.

We will further substantiate ontologies for both domains in
their respective upcoming paragraphs.

2) INFORMATION ABOUT THE REAL WORLD
In section IV, we bootstrapped the criticality analysis by
means of amodel of the real world. For reasons of traceability,
reliability and comparability, we strongly suggest making this
model explicit. We propose an ontological basis.

a: ONTOLOGICAL INFORMATION REPRESENTATION
We make use of a traffic ontology that allows the analysts to
argue over a standardized technical language for the urban
traffic domain, which we denote by the Automotive Urban
Traffic Ontology (A.U.T.O.). The implementation of this
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ontology is based on the 6 layer model [72] and subject of
future work. Though, at this point, we motivate the need
for having such a domain ontology: it enables expert knowl-
edge to be stored digitally such that a sound and sufficiently
complete model of the traffic world can be constructed. This
model represents the entities relevant for reasoning about
criticality. Note that at the beginning, such a model will be
filled with entities deemed to be relevant. If new entities
and relations are discovered to be in scope for the safety of
automated driving, the ontology can be extended iteratively.

Another aspect considers abstractions: entities – e.g. bicy-
clist and pedestrian – can be combined to abstracted classes –
e.g. vulnerable road user. In other words, the abstraction and
refinement relation can be ontologically explicated.

b: INFORMATION ACQUISITION
Although ontologies are an essential tool in such an informa-
tion representation process, the method additionally needs to
consider how to obtain information. This concerns the knowl-
edge – e.g. the taxonomy of relevant entities, their relations
and abstractions – but also the data, meaning concrete facts
about those entities, typically observed in the real world but
possibly also deducted from existing knowledge.

c: KNOWLEDGE ACQUISITION
Existing knowledge can be harvested from various sources.
For the workings of road traffic, those include:
• Guidelines and laws, e.g. driving school catalogs
• Traffic research analyses conducted by domain experts
[7], [67], [77], [81], [73], [78]

• Surveys and opinions of domain experts
• Subjective experience reports
One can also employ knowledge on autonomous vehicles:
• AV disengagement analyses [11], [25], [33], [83]
• Autonomous vehicle accident analyses [34], [86], [88]

d: DATA ACQUISITION
Besides knowledge, data needs to be gathered as well to sup-
port the hypotheses proposed in the method branch. Existing
data sources include:
• Data from automated or manual drives equipped with
automation-grade sensors [1], [15] [37], [39] [40], [74]

• Naturalistic driving studies, e.g. [9], [28] [55]
• Accident data bases [13], [64]
For the exemplary criticality phenomenon, occlusion,

we gathered evidential support by examining an accident data
base. For this, we coordinated an analysis of the representa-
tive GIDAS data base through the traffic accident research at
the TU Dresden.8 We restricted the population to inner-city
accidents involving at least one passenger car from 2007 to
2019, leading to a total number of 12997 cases. Occlusion
was present in 2978 accidents, as depicted in Table 3. This
implies that occlusion occurred – but may not be causal–in

8www.vufo.de

TABLE 3. Absolute and relative cases for the representative GIDAS data
set of inner-city accidents with passenger car involvement. Includes the
projected total number of inner-city accidents with passenger car
involvement in Germany. Occluded lane markings and traffic lights were
not identified.

over a fifth of all accidents in Germany in the given time
frame. An analysis of the identified concretizations shows
that the occlusion of traffic participants constitutes the largest
share. Some concretizations were not identifiable. In the case
of occluded obstacle, there exist no relevant accidents in the
data base. Note that due to the overlap – some accidents
contain multiple concretizations – the sum of the cases for
the concretizations exceeds the total occlusion number.

This data can subsequently be used for the assessment of
relevancy of criticality phenomena in the method branch. We
conclude that occlusion is relevant, as it is associated with
a large part of all accidents. On the other hand, occluded
obstacles were not relevant for human inner-city accidents.

Due to the fact that existing information on autonomous
vehicles acting in open traffic environments is still sparse,
additional data needs to be generated when conducting a
criticality analysis. For example, we identified occlusion to
be both relevant for machines and humans, although there
exists subtle differences. Humans are often affected by visual
obstructions of their line of sight, a phenomenon whose
effects can be seen in data bases such as GIDAS. For AVs,
objects can be occluded by other phenomena as well, e.g.
a fine spray mist that is almost invisible to the human eye.

Depending on the required quality, validity, level of detail,
sample size and cost factors, one can address this issue using:

• Synthetic data from nano-, micro- and macroscopic
traffic simulations, where simulated scenarios can be
derived from real world drives or be synthetically
defined.

• Measurement data from vehicle drives on proving
grounds and in open-context environments.

• Partially synthetic data of X-in-the-loop methods, filling
the continuum of fully synthetic and real drive data.

For this, nanoscopic traffic simulation software such as
openPASS [26] or CARLA [27], possibly in combination
with microscopic traffic simulations like Eclipse SUMO [58],
may be used. However, in order to generate meaningful evi-
dences, this approach relies heavily on the validity of the
simulation environment, the utilizedmodels and their interac-
tions [10], [63]. Therefore, if the plausibilization of a causal
relation is based solely on simulative data, this part of the
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TABLE 4. Parameters corresponding to confounding variables used in the
logical scenario for the exemplary simulation. All parameters were drawn
from a uniform distribution.

hypothesis needs to be continuously validated with real world
data. The continuous validation of such hypotheses can be
considered a part of an AVs life cycle. For example, suppose
that repeated simulative experiments delivered satisfactory
evidence supporting CRstat−occ−tp. For the validation of this
hypothesis with real world data, an AV needs either be able
to recognize CRstat−occ−tp online or record the scenario for
subsequent analysis.

Finally, during the collection process, the question whether
enough data with enough diversity was collected in order
to deliver confidence in the hypotheses will arise. Similar
questions are currently being examined [23], [45] [84].

e: INFORMATION ACQUISITION FOR THE RUNNING
EXAMPLE
In order to further substantiate the running example with
evidences, we obtained data9 for the plausibilization of occlu-
sion using the CARLA Simulator [27]. We defined a logical
scenario for the running example depicted in Figure 16. The
ranges of the parameters are stated in Table 4.
Note that the variables were chosen exemplarily. When

conducting such an experiment on a large scale, all con-
founding variables have to be controlled for in order to
generate statistically relevant evidence. For example, we did
not consider weather as a confounding variable, although it
most likely affects both occlusion as well as criticality, e.g.
in scenarios where rain reduces the visibility as well as the
friction between road and tires. Additionally, valid probabil-
ity distributions and density functions shall be chosen.

For the simulation, we employed simplistic models. The
bicyclist was set to a non-reactive model with constant speed,
whereas the ego vehicle implements a basic driving function.
Its perception relies on an array of several obstacle sensors
pointing to the vehicle’s front with a combined field of view
of 90◦ and a viewing distance of 35 meters. The sensors’ view
can be blocked by visual obstructions such as parking cars.
The ego’s planner conducts a light braking maneuver or an
emergency brake, depending on positions and velocities, if a
moving object, as perceived by one of the obstacle sensors,
is predicted to cross the intersection within a certain time
span.

9The data set is published at https://github.com/lu-w/criticality-analysis.

FIGURE 12. Visualization of the simulation results for the running
example. Group A shows scenarios without occlusion and Group B shows
samples with an occlusion present.

For the experiment, we sampled n = 1000 instantiations
from the logical scenario (cf. Table 4) and executed them
using CARLA. For each simulation runwemeasured whether
an occlusion between ego and bicyclist happened or not,
as well as the maximum areq,cond.
Figure 12 shows a three-dimensional visualization of the

criticality, as measured with areq,cond(ego), plotted against
the two high-impact confounders ‘ego start position’ (x)
and ‘bicycle speed’, which were determined by correla-
tion analysis of the sample data. Here, less critical sce-
narios correspond to low areq,cond(ego)-values (green) while
more critical scenarios correspond to high areq,cond(ego)-
values (red). A detailed analysis of the data is presented in
subsubsection V-A7.

3) INFORMATION EMERGING DURING THE CRITICALITY
ANALYSIS
Besides the traffic domain, it is necessary to store knowledge
about the current state of the analysis, e.g. the relation of criti-
cality to themodeled traffic entities. For example, phenomena
can be tagged, and identified causal relations between entities
can be related to those phenomena.

For criticality phenomena, we propose the model schemat-
ically depicted in Figure 13 using the VOWL specification.10

Each phenomenon CP can be described through an abstract
scenario, i.e. Sc(CP), e.g. the set of all scenarios where there
exists an occluding object between two traffic participants. It
is extended by its association with criticality and the underly-
ing causal relation CR leading to the phenomenon CP. Addi-
tionally, tags can relate a phenomenon to other phenomena
and traffic entities to support the analyst.

Moreover, evidences play a central role in the analysis.
Firstly, there needs to be evidence for the relevance of
the phenomena, answering: Is the given phenomenon even
associated with criticality? In case of a positive association,
we are then interested in finding evidences for the hypothe-
sized causal relations. Finally, after proposing the underlying
causal relation, evidences supporting their plausibility need to
be gathered. These evidences can be from different sources.
For instance, the influence of the friction coefficient on
the Brake-Threat-Number can easily be supported by an

10http://purl.org/vowl/spec/v2
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FIGURE 13. Ontological model of the entity ‘criticality phenomenon’ and its relations, visualized in VOWL.

analytical argument. More complex relations, e.g. that the
number of crossing arms is causal for an increase in criticality,
will be accompanied by empirical evidence, e.g. through
simulation. Moreover, by using an ontological basis, we can
use inference to deductively generate logical evidences.

Lastly, causal relations can also be represented ontologi-
cally.11 The traffic ontology specifies the referenced classes,
e.g. physical objects, and their relations, e.g. before. In the
ontology, the identified causal relations are additionally anno-
tated by their evidences to increase traceability.

C. SCENARIO BRANCH
This section covers the scenario branch of the criticality
analysis, as shown in Figure 4. For various process steps of the
method we require an adequate description of the interesting
happenings within traffic. The point of view of a scenario is
different from a criticality phenomenon or a causal relation.
The scenario is focused on describing the happenings, or even
just the scenery and the actions of the involved actors. Clearly,
scenarios are a key element to scenario-based verification and
validation (cf. [63], [32]), where a vehicle under test is con-
fronted with interesting or challenging situations in order to
assess its performance. The criticality analysis uses scenario
classification to complement the abstraction and refinement
process described in subsection V-A. There are many options
how classification of scenarios can be realized, e.g. according
to criticality phenomena, causal relations or clustering based
on expected behavior. Naturally, scenarios are also employed
for the specification of real-world drives or simulations used
for data acquisition.

Before we elaborate on the requirements on the scenario
description resulting from the proposed workflow, we briefly
introduce already existing terminology from previous works
such as the PEGASUS project. Based on this, we outline
the methodical aspects and requirements on the scenario
description and introduce the concept of abstract scenarios.
In particular, we emphasize the tight interconnection between

11At the end of a criticality analysis, there will be a large number of
propositions on phenomena connected by a web of causal relations. One can
use graph databases to store this network of causal relations.

the scenario description and the developed traffic ontology
described in subsubsection V-B2. The ontology enables a
consistent use of names for entities as well as the efficient
clustering of entities into classes such as ‘vulnerable road
user’. These ontological classes play an important role for the
specification of the scenario classes as well.

1) SCENARIO DESCRIPTION
Scenarios are used to describe the evolution of traffic scenes
over time. Therefore, they are employed to talk about inter-
esting things we experience driving or participating in traf-
fic, to communicate a challenging setup, to talk about what
contributed to a challenging situation or as an instruction for
recreation in a simulation, in proving grounds or for observa-
tion in live traffic flow. There exists a variety of terminologies
on scenarios in the literature. We base our discussion on the
terminology used within the PEGASUS project, i.e. the terms
scene, situation and scenario, as introduced by Ulbrich et al.,
cf. [79], as well as the three different qualifications of the term
scenario – functional, logical and concrete – established by
Menzel et al. [60]. There are already numerous standardiza-
tion activities in this area, e.g. ISO/PAS 21448 [48], which
covers the safety of the intended functionality (SOTIF) and
therefore extends the well-known functional safety norm ISO
26262 [47], or the development of ASAM OpenSCENARIO
[35]. Our terminology is intended to support a development
process to fulfill the requirements imposed by the standards
especially for vehicles in urban traffic.

In order to describe the evolution of traffic happenings,
we consider snapshots of the environment, called scenes. A
scene contains the scenery, the static and dynamic traffic
elements, the self-representation of all actors and observers,
as well as relations between those entities. In contrast to
a scene, a scenario describes a time span. A scenario is a
description of the evolution of a sequence of scenes over
time, starting with an initial scene. In order to characterize
the temporal development of the scenario, we use actions and
events as well as goals and values of the involved actors.

Within PEGASUS, three different types of scenario
descriptions were established by Menzel et al. [60]: the
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FIGURE 14. An overview of the different qualifications of scenario
description.

functional scenario, the logical scenario and the concrete
scenario. We use the following notion of these different qual-
ifications of scenarios, compare Figure 14 for an overview.

A functional scenario is a behavior-based description of
a traffic scenario. It uses a controlled natural language and
may employ the terminology of an ontology as a basis.
Optionally, it may include a visualization. We use this form
of description as a first step to sketch out a scenario, which
is later on used as an easily readable representation of what
is supposed to happen in an informal, abstract way. Although
the original concept had already foreseen a close connection
with an ontology and the formal depth that goes with it, see
e.g. [60], today’s understanding is generally reduced to the
natural linguistic aspect. In order to avoid misunderstand-
ings, we restrain our definition of functional scenario to this
notion.

The next more concrete qualification is the logical sce-
nario. While initially defined in [60], we use the definition
of the DIN SAE SPEC 91381 [17]. We point out a slight
difference in the use within the criticality analysis, caused by
the specifications focus on testing, whereas we consider the
analysis of phenomena associated with critical situations.

A logical scenario is a model of the time sequence of
scenes whose parameters are defined as ranges, starting at a
specific point in time. However, we omit the constraint that
the behavior of the main actor is not further specified.

Within the criticality analysis, on top of the actions of the
surrounding traffic we usually have the behavior of the main
actor also specified. Hence, we deviate from the standard
in that regard. The criticality analysis looks at the traffic
system itself as the system of interest, when identifying causal
relations. Thus, we do not necessarily have a single vehicle
of interest (or even system under test) within a scenario. Even
in the cases where the focus is put on a single vehicle, we still
have to specify its actions. This enables us to express the
actions of ego that contributed to the temporal evolution and
the resulting change in criticality.

Finally, a concrete scenario is an instance of a logical
scenario where all parameters are evaluated to a single value.

a: REQUIREMENTS FROM POINT OF VIEW OF THE
CRITICALITY ANALYSIS
The method branch of the criticality analysis, cf. V-A, is cen-
tered around identifying criticality phenomena and analyzing
causal relations related to criticality in the context in which
the ego will be operating in. Within this workflow, scenarios
play various distinguished roles. In particular, they
• describe the happenings in traffic in a way that is com-

prehensible and can be interpreted for humans,
• enable the creation of a knowledge base, structured as a

scenario database, and
• are also the currency that connects the workflow to

simulation tools and real-world drives.
The method branch (cf. subsection V-A) of the criticality
analysis is based on finding hypotheses for causal relations
which contribute to the criticality of a traffic situation. Simu-
lation and real-world drives are used to generate evidences for
the hypotheses under consideration. For the plausibilization
of such hypotheses, the need for specific additional evidences
may arise. Thus, we derive scenarios related to the proposed
causal relation in order to analyze the correctness or the
validity boundaries of the relation.

The knowledge-driven part of the data acquisition step,
described in the information branch (cf. subsection V-B), uses
scenarios as a means for the experts to talk about sequences
of scenes and situations in traffic or sequences of phenomena
leading to a critical situation.

Causal relations cannot be easily represented in a logical
scenario, since they are generally a more abstract concept
than a parameterized model. Functional scenarios, on the
other hand, having the complete expressiveness of natu-
ral language, can describe cause-and-effect relations. How-
ever, to reach the necessary degree of automation and thus
scaleability in the workflow, it is necessary for the description
to both human- and machine-readable, resulting in the need
for a formal and declarative scenario specification level.

b: ABSTRACT SCENARIOS
For the presented reasons, we introduce the abstract scenario,
situated in between the functional and logical scenario with
respect to the abstraction level, as depicted in Figure 14.
Definition 13 (Abstract Scenario): An abstract scenario

is a formalized, declarative description of a traffic sce-
nario focusing on complex relations, particularly on causal
relations.

The semantic of the description will be closely tied to an
ontology, drastically increasing the precision of the employed
terminology. The declarative specification on the abstract
level enables the focusing of the relevant aspects of the sce-
nario while sparing the details which are unimportant for the
causal relation for the later refinement steps.

A number of of specification schemes are currently ana-
lyzed and extended regarding their use within the criticality
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FIGURE 15. A Traffic Sequence Chart for an abstract scenario in which an object occludes a bicyclist at a pedestrian
crossing.

FIGURE 16. A TSC specifying a subset of the abstract scenario of Figure 15.

analysis. Promising candidates as building blocks for this
task are Traffic Sequence Charts (TSCs) [21] as well as
modeling with zone graphs in the SCODE for Open Context
Analysis (SOCA) approach [14]. In the following, we briefly
introduce these specification schemes under consideration.

Figure 15 and Figure 16 illustrate how an abstract sce-
nario involving the running example of occlusion can be
specified as a Traffic Sequence Chart. The abstract scenario
of Figure 15, ‘obstructing object occludes a bicyclist at a
pedestrian crossing’, depicts a sequence of traffic constraints
from left to right, including a branching of the scenario
into two possible evolutions. In the upper evolution, the ego
brakes in front of the pedestrian crossing and the bicyclist
crosses the street safely, while in the lower evolution, the ego
collides with the bicyclist. From this abstract scenario space,
we can easily specify a subset of scenarios, e.g. by choos-
ing a single path through the TSC and concretizing the
‘obstructing object’ to ‘parking deliveriy van’, as can be seen
in Figure 16.

The SOCAmethod introduced by Rittel et al. [14] is based
on an abstraction from concrete road geometries and concrete
population with objects as well as other traffic participants
called zone graphs. This concept is used together with the
SCODEmethod for the description and analysis of traffic sit-
uations. SCODE is a morphological analysis used at BOSCH,
which is based on the essential analysis described in [59] as
well as the morphological analysis of F. Zwicky [90].

Figure 17 shows the zone graph for the running example on
a sketch of a T-intersection, displaying the different types of
zones that have to be considered in that situation. The zones
the ego will be passing along its intended path, marked by
the red arrows, are called driving zones (Y, F, G and H in this
example). The position zonesK and L denote the areas where
other vehicles can get in conflict with the driving path. The
zones M and N together with their sub-zones Q and P are the

FIGURE 17. A zone graph for the abstract scenario ‘obstructing object
occludes a bicyclist at a pedestrian crossing’.

areas of interest with respect to pedestrians using the cross-
walk F. The sub-zones Y.A to Y.E are dynamic driving sub-
zones that capture the different braking distances for yielding
at the yield line. Then, E can be considered as maximum
braking not sufficient, D as emergency braking possible, C as
uncomfortable braking possible, B as comfortable braking
possible, and A as no braking necessary.

Based on this graph, a behavior specification can be
derived using a Zwicky-Box (morphological box). Each row
of the box represents one of the decision dimensions used
for the specification of the behavior of the ego. Each dimen-
sion consists of a set of (exclusive) valid alternatives. shows
a The Zwicky-Box for the running example, as shown in
Table 5, uses the position of the ego together with the allowed
behavior for each of the driving zones for the specification.
Note that driving zone Y is not present, because it is the
initial zone of the situation and thus a stop in front of the
zone would be meaningless. The definition of the behavior
is given by a consistent partitioning of the space spanned by
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TABLE 5. The Zwicky-Box used for the specification of the behavior
modes on the zone graph of Figure 17. Alternatives marked in yellow
define one rule of the mode ‘comfortable stop’. Dimensions without a
selection are interpreted as ‘don’t care’ and either alternative is contained
in the rule.

these dimensions and can be specified by using rules (logical
expressions) on the dimensions. These rules are clustered into
modes depending on their allowed or expected behavior.

Thus, the resulting models contain the information under
which circumstances the vehicle will have to perform certain
maneuvers, e.g. a comfortable stop or an emergency brake.
Within the criticality analysis, this information can be to
exploited to link the scenarios space that is spanned by such
a specification to criticality phenomena or even to causal
relations. However, exploring this link and its explanatory
strength in more detail are subject to ongoing research.

2) SCENARIO CLASSIFICATION
In order to structure the infinite space of possible scenario
space, we aim at deriving scenario classes. Of course, there
exist myriad possibilities for scenario classification. How-
ever, within the criticality analysis, scenario classification
must be closely tied to the abstraction and refinement step
(cf. subsubsection V-A5), as described in the method branch.

The core idea is to establish a relation between criticality
phenomena, their causal relations and scenario classes to
obtain (i) a definition of done and (ii) an input on where
to look for new phenomena if we are not yet done. With
regard to the high level goals of section III, establishing this
relation contributes directly to structuring the open context
(G3) with an adequate level of abstraction (G5) while aiming
for convergence towards a manageable set of classes (G6).

As to achieve that target, we require an argument for com-
pleteness of the covered scenario space, i.e. whether the union
of all scenario classes covers the complete scenario space.
Furthermore, we need an idea about the completeness of the
complete scenario space itself, i.e. about the coverage of (the
relevant) aspects of the world by the scenario space. Note that
an absolute completeness with respect to the real world is
likely not achievable, due to the hard problem of formalizing
reality. However, the coverage of a closed formalized scenario
space spanning the operational domain of a vehicle seems
comparatively achievable.

As already indicated by Figure 2, criticality phenomena
can be used as a classifier, i.e. they separate the scenario space
into scenarios where the phenomenon plays a role and those
where it does not. The same holds true for causal relations.
Since a causal relation often involves multiple phenomena,
studying combinations of phenomena with respect to the
scenarios in which they are present can also be understood

as an attribute or tag to a scenario class. Combinatorial
testing methods use an heuristic approach to compute a set
of scenarios, as to cover pairwise or, more generally, n-
wise combinations of the basic phenomena [5]. This con-
cept has already been applied successfully to analyze the
domain model for deep neural networks in the context of
perception, identifying relevant influencing factors in [41].
Combinatorial testing can be used in the abstraction and
refinement step subsubsection V-A5 of the method branch in
order to identify causal relations based on combinations of
criticality phenomena. Another classification criteria is the
understanding of criticality as a combination of complexity
and dynamics, as proposed by Damm and Galbas [20].

In the area of virtual testing, using scenario classes to
discern situations where small deviations of the environment
lead to significant changes in the behavior is well established.
This results in scenario classes containing the same expected
behavior for a vehicle of interest. This concept can also be
employed in the criticality analysis as the capabilities of a
vehicle regarding its abstract actions, such as maneuvers, are
rather limited. Basically, the atomic actions used to compose
maneuvers are steer left or right, accelerate or decelerate as
well as give signals, e.g. indicator lights or sounds. A maneu-
ver then can be understood as a short sequence of activities
of a vehicle [24]. A vehicle may execute maneuvers such as
‘change lane’, ‘turn right on intersection’ and ‘keep distance
to lead vehicle’. However, the absolute number of maneuvers
can be assumed to be reasonably limited. The problematic
part with respect to the development of automated driving
functions is the vast space of possibilities that could cause an
AV to perform one of these maneuvers. For example, a ‘lane
change’ could either be caused by the desire to turn at the next
intersection, as part of overtaking another traffic participant,
in order to enter or leave a highway, or a variety of other
reasons. Thus, the expected behavior of a vehicle of interest
is a key aspect of scenario classification.

For the running example of ‘occlusion’, the associated
scenario class, as defined in 4, consists of the set of scenarios
where an occlusion is present, written as Sc(CPocc) = {S ∈
SC | CPocc present in S}. A representative of that class is
depicted by Figure 18.

3) SCENARIO INSTANTIATION
The derivation of single concrete instances from a scenario
class can be understood as a two step process; the method-
ically more recent step being the sampling of logical sce-
narios from an abstract scenario. Abstract scenarios are used
to describe scenario classes. We want to point out that an
abstract scenario is only required to be a declarative descrip-
tion, leading to a non-trivial problem during concretization.
The selection of representative logical scenarios as well as the
estimation of the achieved coverage is similar to the instan-
tiation problem within a logical scenario. However, the issue
here is even harder, due to the fact that the abstract scenario
is just spanned by constraints specified in the declarative
description versus the parameter space of a logical scenario.
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FIGURE 18. Graphical representation of a concrete instance of the
scenario ‘static occlusion of a bicyclist at a pedestrian crossing’. The
underlying OpenSCENARIO file specifies the path of both participants as
well as their initial conditions.

The second instantiation step, deriving concrete scenar-
ios from a logical scenario, has been researched e.g. in the
PEGASUS project. However, sampling the infinite contin-
uous space of a logical scenario remains subject to current
research [63]. The optimal sampling strategy for this space
depends on the question that shall be answered. For the
purpose of checking a causal relation, one can setup a cost
function for an optimizer in a suitable way to aim for a fast
falsification of the hypothesis. This will be an issue for future
research.

Nevertheless, the classical approaches for instantiating
a logical scenario, like random sampling, grid-based sam-
pling, distribution-based evaluation [85], optimization or
search-based approaches, can of course be applied. In the end,
the goal is the identification of sufficient evidence to support
or discard a hypothesis for a causal relation. The question
which of these instantiation approaches render the best results
to achieve the efficient creation of supporting evidence, while
paying attention to the fact that we have to avoid introducing
a bias into the criticality analysis here, is to be answered in
further development. To be able to study this issue some kind
of coverage argument will be necessary, especially for the
consideration of sufficiency as well as avoiding the bias.

In section III, we introduced six high level goals, (G1) to
(G6). The instantiation described here has to contribute to the
goal (G4), i.e. finding sufficiently representative instances.
In both steps, from abstract to logical as well as from logical
to concrete, the selection of the suitable representatives is a
key issue. At this point, it is important that the classes and
spaces spanned by the logical scenarios are partitioned suit-
ably such that a representative instance can even be defined.
This depends also on the question that is posed to the par-
tition. There might be different classifications necessary for
different use cases of the scenario catalog, requiring different
instantiations. For example if the focus of an analysis lies on
perception, different parameters of the logical scenario will
be of interest as opposed to the analysis of a planner decision.

Picking up our running example, let us consider the pre-
viously discussed T-intersection with a crosswalk. Figure 18
shows a concrete scenario instance at a crossing with a parked
truck causing the occlusion in front of the crosswalk.

A logical scenario can be spanned by various parameters
for the variation of the concrete scenario. These can include
the starting positions of the ego vehicle, the position and
velocity of the bicyclist, and the position of the parked truck.

4) SCENARIO CATALOGIZATION
The third step in the scenario branch consists of the cata-
logization of the emerging scenarios, as it is important to
save and document scenarios that appeared in the criticality
analysis. We propose to create this catalog of the created sce-
narios to document the relations between the different levels
of abstraction – abstract, logical and concrete scenarios. It is
necessary to track the criticality phenomena or causal rela-
tions within the scenarios to allow for short iteration cycles
when changes arise. A key issue is tracking the association
of the criticality phenomena and causal relations to scenario
classes, see Definition 4 in subsection V-A. This can be either
in the traffic system as a whole, e.g. a new traffic participant
emerges (e.g. an e-scooter), or it can simply be new knowl-
edge to be brought into the analysis, e.g. as result of an acci-
dent. The scenario catalog helps in finding other interesting
scenarios when looking within the data accumulated in the
information branch. A further application of the catalog is
simply the documentation of the connection between the data
basis used within the information branch and the scenario
representation. This is of use when checking if a scenario has
already been included in the analysis as well as rerunning the
data acquisition in a test drive or simulation.

Such a scenario catalog is important for a long-term
argumentation about coverage. To enable its identification,
we link to the data analysis in the method branch. A scenario
catalog is also useful during the design and testing phase of an
autonomous system as well as for its release (homologation).

VI. CONCLUSION
The method proposed in this work, called criticality analysis,
provides a blueprint for structuring the open context with the
goal of safe operation of automated vehicles at SAE Level
4 and 5 under manageable effort. The criticality analysis has
been divided up into three branches – method-, information
and scenario branch – each consisting of several process steps
that have been sketched in this work. Themethod enables ana-
lysts to identify in which cases criticality arises in the traffic
system and then provide the underlying explanations in order
to establish safety principles and mitigation mechanisms for
those cases. Future research within the VVM project will
address the process steps of the proposed method in-depth
and provide a proof-of-concept by exemplarily conducting a
criticality analysis for the use case ‘urban intersection’.

This entails various activities in the three branches. In the
method branch, we focus on providing a comprehensive set
of relevant criticality phenomena and associated causal rela-
tions. Based on these causal relations, safety principles and
mitigation mechanisms for the homologation of automated
vehicles can be derived. On the side of data analysis we will
employ criticality metrics for the evaluation of scenarios from
real-world data as well as synthetic data with respect to the
requirements and applications within the criticality analysis.
The information branch has to convert the results of afore-
mentioned data analyses into available knowledge. In par-
ticular, providing details on the architecture, implementation
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and applications of the automotive urban traffic ontology.
Further work on the scenario branch includes developing
a concept for scenario classification, analysis of different
scenario instantiation processes and tackling the problem of
representativeness, eventually leading to a comprehensive but
manageable abstract scenario catalog.
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