

Virtual Testing Validation for ADS

Internal research activities status update

UNECE VMAD SG2, March 31st 2021

Riccardo Donà, Biagio Ciuffo

Agenda

- JRC experimental campaign
- VeHIL replication
- Early conclusions

JRC experimental campaign

JRC experimental campaign

- Robotized Smart BME
 - Mobileye camera
 - Side-mounted LIDARs
 - Rear-facing RADAR

JRC experimental campaign

Perform standard driving scenario involving longitudinal dynamics

• Free-flows: 5 events

Car-follows: 32 events

Stop & Go: 4 events

Cut Ins: 8 events

Cut Outs: 8 events

Distance	~ 70 km
Duration	~ 6.5 h

Car-follows

- Jumps in velocity due to camera losing the tracking of the leader (narrow FOV)
- Bad feature for an ADS, interesting pattern for validation

Cut-ins

Cut-outs

VeHIL replication

DrivingCube by AVL®

VeHIL replication

- ADS' longitudinal dynamics in closed-loop
- ADS' lateral dynamics in open-loop (scenario re-execution)
- Targets' trajectories from re-execution rather than the nominal ones
- Carried out multiple repetitions of the same scenario to establish a confidence level

Early results

Computational tools

- Graphical comparison
 - Intuitive but subjective
- Scalar data
 - Quantitative but limited information
- Time series (upon synchronization) computations
 - Mean, median, σ , (N)RMSE, MAE
 - Correlation, R²

Free-flow

RMSE Velocity	~ 0.040 m/s
RMSE Acceleration	~ 0.088 m/s ²

Car-follow

Stop-and-go

Conclusions

Difficulties:

- VeHIL requires some craftmanship to be carried out correctly especially using trajectory reconstruction;
- Reproduction of hard braking on the dyno chassis typical resulted in locking the wheels (probably the tires were getting too hot);
- Instantiation of the initial conditions of the simulation. Given the unstable ADS minor mismatches propagated throughout the duration of the virtual experiments;
- Loss of synchronization in long virtual tests with respect to the real world due to minor velocity discrepancies accumulating.

Thank you

Riccardo.DONA@ext.ec.europa.eu

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide xx: element concerned, source: e.g. Fotolia.com; Slide xx: element concerned, source: e.g. iStock.com

