(@)OICA ELEPA

Industry's comments on UNR157-07-06

OICA/CLEPA
July 7, 2021

Computational flow of Fuzzy Safety Model

Safety Check Process

Check the potential risk of collision
LPotential risk area
Right term: Longitudinal travel time+0.1 Sec.

3. Reaction (example)

3.2.3. If a risk is identified the ALKS vehicle is assumed to plan and implement a reaction by decelerating according to the following equation:
$b_{\text {reaction }}=\left\{\begin{array}{cl}C F S \cdot\left(b_{\text {ego }, \text { max }}-b_{\text {ego }, \text { comf }}\right)+b_{\text {ego }, \text { comf }} & \text { if } C F S>0 \\ P F S \cdot b_{\text {ego }, \text { comf }} & \text { if } C F S=0\end{array}\right.$

1. Lateral safety check

Natural human behavior in Japanese highway

Lateral velocity distribution (wandering)

> Natural human drivers are wandering during lane keeping Median of Lateral velocity $\fallingdotseq 0.3 \mathrm{~m} / \mathrm{s}$, Median of Wandering width $\fallingdotseq 0.75 \mathrm{~m}$

Comparison of Wandering vs Cutting-in of human driver Distribution of maximum lateral velocity \& its position

Lateral distance of

FSM's lateral safety check would induce unnecessary braking in the natural wandering cases in real traffic.

JRC has validated FSM with real traffic data

Initial validation activities

In the spirit of the proposal, the first validation activity focused on the capability of the model to correctly classify preventable scenarios

- 110,500 vehicle trajectories
- 3,000 cut-in scenarios ghD
- 50 cut-ins with minimum TTC < 5 "
- No accidents (all preventable scenarios)
*aln all,cases the Fuzzy Safety Model was able to classify the cut-in as preventable

Results of cut-in scenarios

All cases have been correctly classified as preventable using the FSM

Overall FSM has shown a behavior that is more similar to a human driver, being able to decelerate earlier and softer to avoid an accident

For both the CC human driver model and the Reg157 model, there have been cases that would be considered to be un-preventable

Results of cut-in scenarios: Case A

Validation results performed by JRC FromunR157-07-06

False positives assessment

- Concerns were raised about the possibility that the model would require too many false positive decelerations in order to achieve a lower number of unpreventable scenarios compared to the existing performance models

The highD was used to test false positive cases as well

- We extracted all trajectories where two vehicles are proceeding in two different
lanes without changing lane $->158,394$ observations lanes without changing lane -> 158,394 observations

False positives assessment

Results
Due to the lateral movements of the vehicle in the adjacent lane the FSM required a mild deceleration of the ego vehicle in 2,802 cases (1.51%)

Only in about 300 cases (0.18%) the drop in velocity was bigger than $2 \mathrm{~m} / \mathrm{s}$
In less than $50(0.03 \%)$ cases it was bigger than $5 \mathrm{~m} / \mathrm{s}$
These types of speed drops can be explained by a driver removing the foot from the acceleration pedal which is compatible with the strategy of a competent and careful human driver

Conclusion: false positives do not seem to represent a major issue for the model

Industry's interpretation of the results

These false positives are not acceptable because;
\checkmark Pretty big number of unnecessary decelerations were observed
\checkmark They could cause safety critical situations in natural flow of traffic

How does Industry interpret the assessment

Compare to 3,000 cutting-ins actually occurred;

- Due to the lateral movements of the vehicle in the adjacent lane the FSM required a mild deceleration of the ego vehicle in 2,802 cases (1.51\%)
\Rightarrow FSM triggered unnecessary deceleration almost as many as actual cutting-ins
- Only in about 300 cases ($\mathbf{0 . 1 8 \%}$) the drop in velocity was bigger than $2 \mathrm{~m} / \mathrm{s}$
\Rightarrow FSM triggered significant unnecessary deceleration almost 10% of actual cutting-ins and its deceleration level was not declared in UNR157-07-06
- In less than 50 cases (0.03%) it was bigger than $5 \mathrm{~m} / \mathrm{s}$
\Rightarrow FSM triggered unnecessary harsh deceleration almost 2% of actual cutting-ins and the deceleration level must have been at least $4 \mathrm{~m} / \mathrm{s}^{2}$

Conclusion: False positives caused by FSM are significant safety issues and not acceptable for customers as well \Rightarrow = Need further investigation

