Scenario Validation method for Lane Change Status report

September 13, 2021
MLIT, Japan

Back ground

- Japan has explained in this SIG that we should consider Emergency lane change(ELC) as a top priority, when SIG considers ALKS extension. And Japan suggests that Regular lane change (RLC) should be considered with sufficient time taking account the progress of FRAV and VMAD discussion in order to avoid divergence between them.
- At the same time, Japan understood some SIG members are willing to consider RLC in parallel with ELC. We think "scenario validation" is necessary to access safety aspect of ADS function, so we propose to introduce scenario validation method into UNR157 extension, mainly for the sake of RLC, like original UNR157(Annex4) and on the base of VMAD NATM concept .
- Due to the lack of time, Japan has not yet presented detail pass/fail criterion. Japan is trying to gather technical data and to propose in coming session.
- Today, we explain our concept. Taking into account your feedback, we will continue to work.

Proposal for Functional Scenarios

These scenarios are in line with NATM MD, so if you know the detail of this concept, please check NATM-MD.

$\underbrace{\text { Ego }}_{\text {¢ }}$	Side : Follow		Surrounding Traffic Participants' Position and Behavior			
	Road geometry	Ego-vehicle behavior	Cut in	Cut out	Acceleration	Deceleration (Stop)
	Main roadway	Lane keep				
		Lane change		$\xrightarrow{N(0)}$		
		Lane keep				
	Marge	Lane change				
		Lane keep			$x_{6 x}^{0.19^{d x}}$	
	Branch	Lane change				

24 Functional Scenarios \& Logical Scenario

- For validation, we need to convert from functional scenario to logical scenario. Converting to logical scenario means to add parameters into functional scenario.
- We suggest logical scenarios by using parameters such as "number of lanes", "kind of lane of ego-vehicle" and "relative positon between ego and other vehicle".

Functional Scenario

Road geometry	Ego-vehicle behavior	Surrounding Traffic Participants' behavior
Main roadway Marge Branch	LK (LaneKeep) LC (LaneChange)	CutOut* Acceleration Deceleration

total : $3 \times 2 \times 4=$ 24scenarios

※The LC scenario is the relative movement of the own vehicle and other vehicles. Therefore, organize in the relative direction of LC (LC in the same direction, LC in the opposite direction)

Logical Scenario

Regarding "relative positon between ego and other vehicle"

- When we think about relative position between ego- vehicle and other vehicle, we should think about possibility of surrounding ego-vehicle and 2 ahead leading vehicles in case of lane keep. (see left figure)
In addition, in case of ego-vehicle's lane change, we need to consider more possibility of relative position of other vehicle(see right figure).

In case of ego-vehicle's lane keep

In case of ego-vehicle's lane change

List of logical scenario to be accessed(main road case)

- We can select some logical scenarios to be accessed for the case of main road.
- In addition to main road case, other cases such as merged road and branched road case should be considered

How to define Parameters

Rear vehicle drivers are not always driving carefully
\Rightarrow In order to define parameters of Careless and Poor human driver, we analyze the experimental data by the driving simulator.

Driving simulator experiment and past evaluation meter

Outline of DS experiment

Data collection status by cut-in condition
(3 patterns/experimental order)

: Experiment participants drive : Peripheral cars (passenger cars)
: Lane change car

Relative velocity [km/h]	Number of trials (23people $\times 4$ times	Number of valid data *
	92	88
	92	91
	92	90

* Excludes cases where the preceding vehicle was preparing for braking before LC
Insufficient evaluation level of relative velocity

Attribute of experiment participants

attribute	Number of people	Characteristic	composition
General driver	23 people	\bullet Use the highway more than 6 times a year Average years of driving experience:14.3 years Average annual mileage : About 13,000km	\bullet Men:14/Women:9

Rear vehicle parameters (driver reaction time)

Setting the careless side as a 75% tile value

Rear vehicle parameters (deceleration rate)

Setting the careless side as a 25% tile value

Reaction time
1.82 s

Deceleration rate
$3.7 \mathrm{~m} / \mathrm{s}^{2}$

Relative velocity : $50 \mathrm{~km} / \mathrm{h}$

t_{2} : Rear vehicle driver brake start $D_{\text {mean }}$: Average deceleration of the brake

Tentative Parameters as a careless driver

[] Of (1), (2), (3)
is a provisional constant value

Relative velocity : $50 \mathrm{~km} / \mathrm{h}$

Relative velocity : $50 \mathrm{~km} / \mathrm{h}$

(3) Minimum final gap time

Temporary storage with THW $=1.0 \mathrm{~s}$
(Quote the value of ACSF Cat.C)

Definition of socially acceptable minimum inter-vehicle distance for careless driver behavior with respect to RLC

pass/fail criterion

- By using scenarios and parameters, we try to establish pass/fail criterion for regulation.
- Pass/ fail criterion between ELC and RLC should be different. Especially for RLC criterion, we need sufficient analysis and discussion.

Subsequent vehicle driver parameters in a reasonably foreseeable range

Remaining Issues for RLC scenario evaluation

Reflecting the results of the above additional experiments and analysis, we will immediately consider specific RLC scenario evaluation and plan to propose them by the ALKS-SIG in December.

