Additional input on V2X virtual mileage

For discussion at 50th EVE IWG

23 June 2021

Presented by USA

Selected proposal (EVE 50 Day 1)

Option	Steps	Remarks
US Informal discussion	 Virtual km = (total discharge energy in V2X mode [Wh]/certified energy consumption [Wh/km]) Include vehicle in Part B Vehicle km for Part B = Odometer km + Virtual km 	 Converts V2X usage to virtual mileage Other energy usage while parked considered to be normal usage (e.g. BMS activity or battery thermal control, cabin preconditioning) Requires one counter
OICA(a)* EVE47-05e and as shown at EVE 48	 Virtual km = Odometer km × (total discharge energy [Wh] / total discharge energy while driving [Wh]) Exclude vehicle from Part B if Virtual km exceeds Odometer km by [x] thousand km 	 Counts all energy usage while parked toward a virtual mileage allowance Requires two counters
OICA(b) EVE46-10e and EVE46- 10-Rev1e	 Expected discharge energy [Wh] = certified energy consumption [Wh/km] × [100K or 160K km] Exclude vehicle from Part B if total discharge energy [Wh] exceeds [1XX%] of Expected discharge energy 	 Counts all energy usage while parked, and extreme use cases (frequent towing, energy demand for autonomous driving, etc) toward an excess energy allowance Requires one counter

Open issues

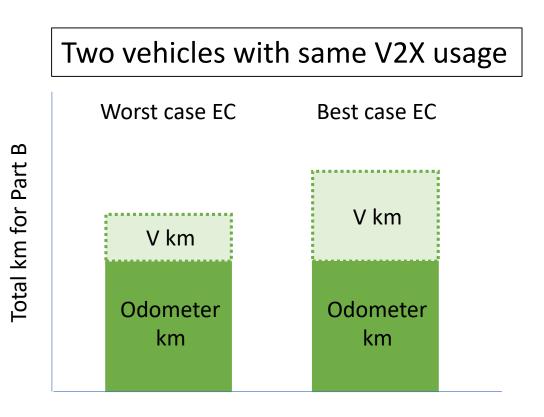
- Clear definition of V2X usage
 - Japan to propose concrete text at EVE 51
 - Additional discussion is offered here
- Appropriate denominator for virtual mileage formula
 - Several options for energy consumption (EC) in denominator
 - Implications on stringency
 - Availability of the selected quantity on the vehicle

Definition of V2X usage

Varieties:

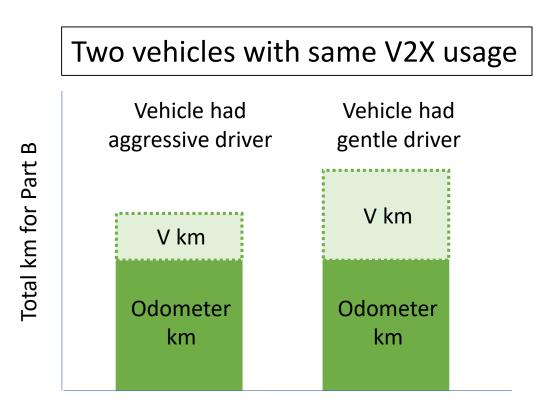
- V2L = vehicle to load (discharge) irregular, episodic [e.g. power tools at work sites]
- V2G = vehicle to grid (discharge + recharge) daily, frequent, shallow
- V2H = vehicle to home
 - Power outages (discharge) irregular, episodic
 - Solar/supplementary grid (daily discharge + charge activity) [e.g. solar energy storage buffer]

Questions:


- Should all of these varieties be included in V2X definition?
- How specific must the text of the GTR be?
- Is it possible and practical for the vehicle ECU to recognize and quantify all forms of V2X usage?
- Can onboard record of V2X usage be verified?

Denominator for virtual mileage formula

•
$$Virtual\ km = \left(\frac{\text{total discharge energy in V2X mode } [Wh]}{\text{"appropriate measure" of energy consumption } [Wh/km]}\right)$$


- <u>Larger EC</u> = fewer virtual km allowed = <u>more stringent</u>
- Possible options for denominator:
 - Predetermined fixed value:
 - The certified/declared EC of the subject vehicle
 - The highest certified/declared EC of the available configurations of the subject vehicle model
 - The highest certified/declared EC within the subject vehicle's Part B family
 - A figure determined by the OEM to best represent equivalent degradation rate of V2X
 - Onboard value, collected over lifetime of vehicle:
 - The individual vehicle's actual energy consumption per km driven

Implications of using a fixed EC value in denominator

- Higher EC value ("worst case"
 EC) results in less virtual km
- Favors greater stringency
- This may be particularly appropriate if V2X usage is "easier" on battery life than normal driving

Implications of using an onboard "actual" EC in denominator

- Vehicle with gentle driver is credited with more V2X miles than vehicle with aggressive driver, even though V2X likely had the same effect on both vehicles
- Gently used vehicle already is likely to experience the least "driving" degradation, and now it gets the most allowance for V2G usage too

Other practical considerations

- If an onboard value is used, the manufacturer must collect and maintain the data, and it must be verifiable
- If a fixed value is used, the value must be established at time of production so the vehicle can "know" the value
- Can the fixed value be determined unambiguously?
 - Ideally, it would be a published certification value for the subject vehicle
 - However, declared EC value may be based on a different vehicle in the family
 - EC of specific vehicle configurations might not be available as a predetermined value