Interim report of vehicle performance investigation for VtP

AEBS-HDV-05
30th June 2021
MLIT, Japan
NTSEL, Japan

Outline of the test and test vehicles

Outline :

- The performance of AEBS Vehicle to Pedestrian was investigated by the actual vehicle test.
- The vehicles of two categories (N2, N3) were tested.
- The tests were carried out in accordance with R152 (AEBS tests for M1/N1).
- Test speed was $10,15,20,25,30,35,(40,50,60) \mathrm{km} / \mathrm{h}$.

Test vehicles :

N2 (Hydraulic brake)
N3 (Air brake)

N2 (Hydraulic brake)

N3 (Air brake)

Weight of vehicles	Unladen	Laden
N2 (Hydraulic brake)	2930 kg	5030 kg
N3 (Air brake)	10905 kg	$-\quad{ }^{* 1}$

*1 The test of Laden condition of N3 was omitted, because the loads to make the vehicle laden condition (almost 25000 kg) could not be prepared.

Pedestrian dummy

Pedestrian target : ISO 19206-2:2018
As well as R152, a child soft target in accordance with ISO 19206-2 was used. Additionally, an adult soft target in accordance with ISO 19206-2 was used in the particular test speed.

Non-articulated (fixed legs) soft targets were used, because there was concern of bigger damage of legs of the soft

ISO 19206-2:2018 (Child)

ISO 19206-2:2018
(Adult) targets by collisions with large truck.

Testing scenario	Moving speed	Collision offset
Stationary (Child)	$0 \mathrm{~km} / \mathrm{h}$	50%
Crossing (Child)	$5 \mathrm{~km} / \mathrm{h}$	50%
Stationary (Adult)	$0 \mathrm{~km} / \mathrm{h}$	50%
Crossing (Adult)	$5 \mathrm{~km} / \mathrm{h}$	50%

Overview of tests

N3(Air), Crossing (child)

N3(Air), Stationary (child)

N2(Hydraulic), Crossing (child)

N2(Hydraulic), Stationary (child)

Test Result : Speed reduction

Initial speed means actual vehicle speed, and it was defined as below.

- In the case that emergency braking was observed : Vehicle speed at when deceleration exceeds $0.3 \mathrm{~m} / \mathrm{s}^{2}$.
- In the case that emergency braking was not observed : Vehicle speed at TTC 4 s.
*2 In N2 Unladen condition, tests of initial speed of $40 \mathrm{~km} / \mathrm{h}$ or higher of crossing pedestrian scenario were omitted, because no emergency braking was observed below $35 \mathrm{~km} / \mathrm{h}$.
*3 In N2 Laden condition, only the tests of stationary scenario were performed, because no emergency braking was observed in the tests of crossing scenario in Unladen conditions.

Test Result : Time to 1 G

Only data in the case when deceleration by emergency braking was significantly observed was shown in the figure.

Example of time to 1 G

Time to 1G was measured from time series data of deceleration by the following method. N3 Air brake : From the timing of deceleration $0.3 \mathrm{~m} / \mathrm{s}^{2}$ to the first peak value N2 Hydraulic brake : From the timing of deceleration $0.3 \mathrm{~m} / \mathrm{s}^{2}$ to the first linear area

Test Result : Start of emergency braking (TTC)

N3 (Air) Unladen

Initial speed $[\mathrm{km} / \mathrm{h}]$

Only data in the case when deceleration by emergency braking was significantly observed was shown in the figure.

AEBS activation timing : Timing at when deceleration exceeds $0.3 \mathrm{~m} / \mathrm{s}^{2}$.

N2 (Hydraulic) Unladen

N2 (Hydraulic) Laden

Test Result : Start of warning (TTC)

Test speed:
It is defined as the speed of test condition, and distinguished from the Initial Speed.

1. Overviews of the results

- In testing the performance of HDVs in avoiding collisions with stationary pedestrians, the vehicles managed to avoid the collision when running at a speed of $10 \mathrm{~km} / \mathrm{h}$ to $60 \mathrm{~km} / \mathrm{h}$ (failing in some cases though).
- In testing the performance of N3 vehicles in avoiding collisions with pedestrians crossing the road, they could not avoid the collision when running at a speed of 30 to $60 \mathrm{~km} / \mathrm{h}$, but the activation of the alarm and the emergency brake was confirmed.

2. Expected reasons why they failed to avoid the collision with a crossing pedestrian

- The test vehicles were not provided with systems that assumed pedestrians crossing the road.
- Due to the angle of view of the onboard camera, it was difficult for the vehicles to detect pedestrians when running at low speeds (less than 30km/h).

3. Future plan

Due to Covid-19 crisis and time constraints, we could evaluate vehicles of only one manufacturer. As we plan to survey also other manufacturers' vehicles in early August, we would like to submit a specific Japanese proposal, compiling the results of both surveys.

Thank you for your kind attention!

