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• No standard validation methodologies exist for ADS virtual testing

• Team defining the validation procedure == team defining requirements

• Presentation’s goal:

• Not to force correlation thresholds based on literature survey

• To give hints on modelling approaches, validation methodologies and obtained 
correlation

Disclaimer



Virtual validation pipeline



A common modelling framework

[1] Schöner et al.



Validation workflow

[2] Dueser et al.



• KPIs definition

• Correlation method

• Correlation threshold

Validation pipeline



Subsystem-level validation
1) Sensor models

2) Vehicle dynamics models

3) Environmental models



Subsystem-level validation

Sensor models Vehicle Dynamics models Environment models
Camera Steering system Road layout

LiDAR Braking system Tarmac specification

RADAR Powertrain Traffic objects

GPS Tyres Weather condition

… … …

• Non exhaustive list of sub-models:



Vehicle-system validation
1) Chassis models

2) Multibody models



• Survey work in Kutlay et al. [3]

• Models for vehicle dynamics characterized by wide range of options:

• Sub-models for specific applications (e.g. suspension model for ride/comfort 
analysis)

• Chassis models for medium fidelity simulation (e.g. single track + Pacejka tyre)

• Multibody models for high fidelity simulation

• Importance of data collection:

Vehicle-system validation

• (Quasi-) steady state
• Step response

• Pulse response
• Real-world manoeuvres



• Tyres and suspensions are (typically) the main sources of uncertainties

• Establish consistency between model parameters and validation 
metrics: any quantity which plays fundamental role for the application 

shall be accounted for in the metrics

• Validation should enforce time + frequency domain approaches.

• Formulate domain validity in terms of group of inputs and outputs (e.g. a 

lateral acceleration range or a steering angle input frequency interval) 

Vehicle-system validation



• Relevant KPIs for metrics computation

• !!, #", $, &̇

• Relevant methods

• Steady-state &̇ gain

• #" build-up time

• #"/&̇ peak values

• …

Vehicle-system validation

Effect of model reduction, adapted from [9]



• Highly detailed multibody model (14 DoF)

• KPIs: !!, #", %̇
• Validation: RMSE(V) 

Vehicle-system validation [17]



• Advanced concepts in validation Viehof et al. [8]

• Introduce statistics via testing the model against multiple configurations 

of the real vehicle(s)     increase trust in the model

• Try to decouple model validity to parametrization accuracy

• Correlation threshold mostly left subjective 

• 95% confidence interval typically adopted

Vehicle-system validation



Sensor-system validation
• RADAR

• LiDAR

• Camera



• “Low” fidelity:

• object positions retrieved from object status in the virtual environment

• sensor models are based on geometrical aspects (FOV,…)

• “Medium” fidelity:

• object positions retrieved from object status in the virtual environment

• Introduce the detection probability/physical aspects

• “High” fidelity:

• Take advantage of rendering techniques (e.g. ray tracing, rasterization)

Fidelity levels [14] Despite different 
sensors’ working 
principles, common 
modelling approach



Modelling option (fidelity level)
Maxwell equation (FDTD)

Physics-based (ray tracing)

Data-driven (black-box)

Phenomenological (statistical I/O)

Object-list (a.k.a. ground truth)

RADAR-system validation

• Rosenberg et al. [4]:

• Ultimate standard for modelling & validating RADAR does not exists 

• Strong coupling between modelling fidelity level & simulation environment 
rendering capabilities (hard to decouple RADAR’s model from environment)

• Challenges hard to reproduce: multipath-propagation, separability of targets, 
consistency of RCS (Radar Cross Section)

Validation methodologies
Raw data

Detection level

Object level
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RADAR/LiDAR-system validation

• Due to similar modelling paradigms (ray-tracing) physics-based 

RADARs/LiDARs models have similar validation methodologies

• Strong connection between simulation engine & physics-based sensor 

models

Interfaces specification [5]

“Explicit 
testing”

“Implicit 
testing”



RADAR/LiDAR-system validation

• Metrics & values for physics-based models:

• Occupancy-grid pixel loss:  ∑!#$width ∑"#$
height |*+,%&'((., /) − 23#4%&'((., /)|

• Occupancy-grid Pearson correlation (0.57-0.76 [5,18]): 
∑!"#$ !!,&*!̅& "!*,"

∑!"#$ !!,&*!̅&
' ∑!"#$ "!*," '

• Occupancy-grid ratio (0.2-0.5 [6]): ∑!
( )*++ ,!$ -!

∑&( )*++ -*.+ -&

• Average minimal euclidean distance points in cloud (0.1-0-7 m [6]):

!//′ (#123, #4567 ): = 1
9∑:=1

9 )*+1≤=≤> ,123 − ,4567

Adapted from [5]



• Models’ comparison work in Ngo et al. [12]

• High-level Evaluation: point clouds/objects tracking

• Low-level Evaluation: Doppler effect/object position

• IRM: lowest fidelity RADAR’s model

• DDM: medium fidelity RADAR’s model 

• RTM: highest fidelity RADAR’s model

RADAR-system validation
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• Camera share similar working principle to human eyes:

• Their modelling might seem easier wrt RADARs/LiDARs

• Typically cameras’ output fed into AI modules (CNNs):

• Black-box software stack: hard to predict the effect of modelling artifacts to the final
output of the AI algorithm

• Need to create sensor-grade and AI-grade realism 

Camera-model validation



• Camera-related phenomena:
• Lens distortion: optical aberration due to projection

• Vignette: darkening of the screen border.

• Grain jitter: white noise injection.

• Bloom: presence of fringes around bright areas

• Auto exposure: image gamma adaption to darker or 
brighter areas.

• Lens flares: reflection of bright objects on the lens.

• Depth of field: blurring of objects near or very far 
away of the camera.

• Exposure time: shutter opening duration.

Camera-model validation

Camera model [10]



• Comparison of camera stimulation vs MiL simulation

• Specific camera simulation software

• Pixel-level loss (error 3/255)

• Colour spectrum

Camera-model validation [15]



• Physics-inspired camera model

• Validated against 3 real cameras

• Focal length

• Distortion

• Vignetting

• Linearity

Camera-model validation [16]



Virtual-world validation
• Roads

• Traffic Agents

• …



• Widely recognized modelling standards

• Virtual road network: ASAM OpenDrive® + ASAM OpenCRG®

• Virtual traffic agents: ASAM OpenScenario®

• No requirements on traffic agent modelling, e.g. how to reproduce traffic dynamics?

• Virtual 3D reconstruction of the driving environment:

• Obstruction of view, weather conditions…

• Move beyond visual realism, need to provide sensors grade realism

Virtual-world validation



• No sufficiently established discussion on validation approaches

• Large variety of modelling approaches for traffic agents makes it almost impossible to 
compare performances

• Validation mainly defined “a posteriori” once integrated tests are carried out with 
validated sub-modes

• Validation might not even be necessary in case of scenario-based assessment

Virtual-world validation



Integrated-system validation
1) Replay with raw-data

2) Replay with perception in-the-loop

3) Closed-loop with ADS



• Aims at creating a “Virtual Proving Ground”

• Direct comparison between each sub-module and its physical counterpart is necessary
but not sufficient 

• Need to investigate overall closed-loop behaviour of the M&S

• Examples (Closed-loop with ADS):

• Enable S3 (VeHIL)

• UTAC Ceram AEBS proposal (discussed on March, 31st 2021)

• Riedmaier et al. [13], car-following scenario (MIL/VeHIL) 

• Riedmaier et al. [11], LKS (R79-like) validation (HIL)

Integrated-system validation



• Enable-S3 results

• Left turn unprotected 
junction scenario

• Overarching list of KPIs

• Only qualitative assessment
of velocity presented

Integrated-system validation



Integrated-system validation

• Car-following application [13]

• Study repetitiveness of VeHIL (signal 
injection) setup

• Check consistency of initial conditions

• KPIs: Δ*, !!, #!

• Computational tools: correlation, graphical



• Car following application

• Study repetitiveness of VeHIL (camera stimulation) setup

• KPIs: !!, #!

• Importance of the ADS in “stimulating” the testing 
environment

Integrated-system validation JRC

FREE-FLOW RMSE ?@ PEARSON
VELOCITY 0.041 0.0403 0.9974

ACCELERATION 0.088 0.0656 0.9764

CAR-FOLLOW RMSE ?@ PEARSON
VELOCITY 0.376 0.3612 0.9898

ACCELERATION 0.166 0.1657 0.7384



Integrated-system validation

• LKS application [11]

• Complete validation pipeline

• Scenario allocation

• Signal processing

• Event finder

• KPIs selection (coverage & acceptance)

• Statistical analysis 



Integrated-system validation

• LKS application [11] in HiL

• Metric: distance areas between CDFs

• Move beyond tolerances by considering CDF

• Prediction interval characterization

• Investigation over domain (!!, #") of unsafe error

• Regression model to estimate unsafe error and 
prediction intervals (95% confidence)

Safe area

Unsafe area
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