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DRAFT DOCUMENT OF REFERENCE:  
A GENERAL APPROACH TO ESTIMATE MEASUREMENT UNCERTAINTIES 
 
 

1. Background 
 
In all kind of testing of objects according to standards, there is a certain measurement 
uncertainty. This is also the case of the measurement of sound levels of vehicles and tyres, 
for example during type approval of these objects. In standards used for such measurements 
(ISO, ANSI, CEN, etc.) a separate chapter on measurement uncertainty is mandatory. 
However, this is not the case in UN ECE regulations. 
  
The focus on In-use compliance checking of vehicles is increasing, as the introduction of the 
Regulation (EU) 2018/8581 (Marked surveillance) is showing. In the US., such testing has 
been in place for decades for emissions and safety (not noise).  
 
 
These kinds of tests will then be performed by institutions not involved in the original type- 
approval test ("third party"). Therefore, uncertainties connected to such market surveillance 
tests will be of uttermost importance, as a failure they could withdraw any previous given 
type-approval to the vehicle/object.  
 
Such third-party testing is not within the scope of UN ECE, however measurement 
uncertainties have also an important role in general for Conformity of Production (COP), 
which is part of UN ECE regulations for vehicles and tyres. 
 
GRBP has therefore been asked to establish an Informal Working Group on measurement 
uncertainties to work on the following topics: 
- Improvements of test methods 
- Compensation, if possible (systematic errors) 
- Remaining uncertainties (random errors) 

 
This Draft rapport outline the general approach to measurement uncertainty, based on both 
ISO 57252 and ISO/IEC Guide 98-3 (GUM)3. However, the steps of defining the uncertainty 
of a measurement based on ISO 5725 do not differ significant from the GUM. Therefore, the 
statistical method described in this report will mainly focus on the GUM. 
 

2. General considerations 
 
Measurement procedures are always affected by factors causing disturbances leading to 
variation in the results observed by the same subject. The source and nature of these 
perturbations are not completely known and can sometimes affect the end-result in a non-
predictable way. 
 
A measured result shall be understood as an approximation to the true result, which by itself 
is unknown. 
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 Two measurements are deemed to provide the same result if their test results are 
within a given uncertainty. 

 
Thus, the knowledge of the measurement uncertainty is important as it provides information 
about the precision and repeatability of measurements. 
 
It is important to minimize the uncertainties, e.g. by narrowing ambient and test conditions or 
by corrections. Any residual uncertainty shall be covered by tolerances. 
 
Sources of errors in measurements come from limitations in the sensitivity of the instruments 
or from imperfections in experimental design or measurement techniques. Errors are 
classified as rando or systematic. 
 
Random errors, which cannot be compensated for 
 
They are always present and are from operator approximating a reading and changes in the 
experimental conditions. There is equal probability that the reading will be too high or too 
low. To minimize random error, repeated measurements are taken, and the average or mean 
is calculated. If the same operator gets the same results, the results are said to be 
reproducible, see figure 2.1. Recording the precision or uncertainty is one way of 
representing random error: 
                                          measurement ± random error 
 
 
Systematic errors, which can be compensated for 
 
These are typically present and are from limitations in instruments, technology and operator 
skill. To minimize systematic errors, carefully calibration of the instruments can be done, and 
the operator uses the best techniques. Systematic errors lead to bias, moving the 
measurements away from the true value in one direction or the other, see figure 2.1. 
Recording the bias can be represented as: 
 
                measurement + systematic error    or   measurement – systematic error 
 
 

                       
 
                      Figure 2.1 Graphical representation of random and systematic error. 
 
In figure 2.1, the bias is measurement – systematic error. Normally, only the uncertainty is 
reported. Systematic errors are dealt with only if the true value is known and then the % error 
can be calculated and discussed. 
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Precision and accuracy in measurements 
 
Precision reflects how reproducible the measurements are while accuracy reflects how close 
the measurements are to the true value. Ideally, we aim for both precision (smaller random 
errors) and accuracy (systematic error). The target analogy works well, as shown in figure 
2.2. 
 

 
 
Figure 2.2 Precision and accuracy. Notice that random error is related to precision while systematic errors are 
related to accuracy. 
 
A graphical representation is shown in figure 2.3. 
 

 
Figure 2.3 Graphical representation for precision and accuracy. Note that the set of readings to the left represent 
high accuracy and low precision. Those on the right indicate the values have high precision and low accuracy. 
 
 
 
 
                                                                                     
It should be noted that the approach to define the uncertainty contribution as given by the 
GUM do not distinguish between random or systematic errors. 
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3. How to handle measurement uncertainty 
 
To reduce measurement uncertainty, the following approach is recommended4: 
 

A. Avoidance of uncertainties 
Normally, a regulation/measuring method defines certain tolerances within which the 
measurements can be performed. It is important to understand the possibilities to reduce 
uncertainty by limiting boundary conditions.  
 
As an example, measurements according to UN ECE R117 on rolling sound can be 
performed within a test track surface temperature between +5 to + 50 °C. The measured 
sound level at a certain surface temperature shall then be corrected to a reference 
temperature of + 20 °C, based on a defined correlation correction between road surface 
temperature and sound level in this regulation. If the measurements can be made as close 
as possible to this reference temperature, the measurement uncertainty related to the 
influence of temperature can be reduced. 
 

 
B. Use of compensations (reducing systematic errors) 

Staying with the UN ECE R117 example, the measured sound level at a certain surface 
temperature shall then be corrected to a reference temperature of + 20 °C, based on a 
defined correction between road surface temperature and measured sound level.  The 
correction does not eliminate measurement uncertainty, but it does reduce the measurement 
uncertainty.  The lowest possible uncertainty is if all measurements are performed at + 20 °C.  
 

C. Use of an uncertainty model 
As there is never a "true" value for the final result, there is a need to use an uncertainty 
model to define the tolerances (as expected variance) of the measured value. Such 
uncertainty models are defined in ISO 5725 and in the ISO/IEC Guide 98-3. 
 
 

D. Repetition of measurements 
In a regulation/measuring method, a certain number of repetitions of a test condition can be 
defined, as a means to reduce uncertainties. Therefore, by repeating measurements under 
equal boundary conditions, using the mathematical mean of the measurements minimizes 
the uncertainty, as the influence of random errors will be reduced. An example of this 
practice is the use of four measurement runs in UN ECE R51.03 which are then 
mathematically averaged. 
 
This approach is shown in figure 3.1 
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                Figure 3.1 Approach to reduce measurement uncertainty4  

 

4. Stages of uncertainty evaluation 

There are in principle two stages to consider: 
 

1.  The formulation stage: 
a) defining the output quantity Y (the measurand) 
b) identifying the input quantities on which Y depends 
c) developing a measurement model relating Y to the input quantities 
d) on the basis of available knowledge, assigning probability distributions – Gaussian, 

rectangular, etc - to the input quantities (or a joint probability distribution to these 
quantities that are not independent) 

  
2. The calculation stage consists of propagating distributions for the input quantities 

through the measurement model to obtain the probability distributions for the output 
quantity Y and summarizing by using distribution to obtain: 

a) the expectation of Y, taken as an estimate y of Y 
b) the standard deviation of Y, taken as the standard uncertainty of µ(y) associated with 

y 
c) the coverage interval containing Y with a specific coverage probability. 

 
 

5. ISO/IEC 98-3 (GUM) approach 
 
The GUM uncertainty framework uses: 

a) the best estimates of xi of the input quantities Xi 
b) the standard uncertainties µ(xi) associated with xi 
c) the sensitivity coefficients ci 

to form an estimate y of the output quantity Y and the associated standard uncertainty µ(y). 
 
An input quantity to the uncertainty model is never exact, so an assessment must be done.  
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In most cases, a measurand Y is not measured directly, but is determined from N other 
quantities X1, X2,…, XN through a functional relationship: 
 
Y = ƒ (X1, X2,…, XN)                                                                                               (1)  
 
A general expression for a measurement model is: 
 
h(Y,X1…….XN) = 0               (2) 
 
It is taken that a procedure exists for calculating Y given X1…..XN in equation (2) and that Y is 
uniquely defined by this equation. 
 
The input quantities X1, X2,…, XN  upon where the output quantity Y depends, may 
themselves be viewed as measurands and may themselves depend on other quantities, 
including corrections and correction factors for systematic errors. 
 
An estimate of the measurand Y denoted by y, is obtained from Equation (1) using input 
estimates x1, x2,….,xN for the values of N quantities X1, X2,…,XN. Thus, the output estimate y, 
which is the results of the measurements, is given by: 
 

3. y = ƒ (x1, x2,…,xN)                                                                                                   (3) 
  
If the input quantity can lie on both sides of the true value and the probability is higher if it is 
closer to the true value than further away from it, one can assume a normal ("gaussian") 
distribution as a good approximation. Figure 4.1 show such a normal distribution, where µ is 
the mean value of the variance V of the quantity and σ is the standard deviation (V = σ2).  
 
                                                        
 
 . 
 

                           
       
                                   Figure 4.1 Normal ("gaussian") distribution 
 
If all values of the input quantity are equally likely within a given interval, the distribution is 
rectangular, as shown in figure 4.2. 
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                                Figure 4.2 Rectangular probability distribution within the interval a to b. 
 
In some cases, the input quantity can only lie above or below a fixed value, and in that case, 
one has a single-sided distribution. In some cases, a half-normal distribution (single-sided) 
can also be a good approximation, if for example, the input quantity is more likely to lie close 
to a limit value, than further away. 
 
Knowledge about an input quantity Xi is established from repeated indication values (Type A 
evaluation of uncertainty) or scientific judgement or other information concerning the possible 
values of the quantity (Type B evaluation of uncertainty). 
 
In Type A evaluation of measurement uncertainty, the assumption is often made that the 
distribution best describing an input quantity X given repeated indication values of it 
(obtained independently) is a Gaussian distribution (figure 4.1). X then has expectation equal 
to the average indication value and standard deviation equal to the standard deviation of the 
average. 
 
When the uncertainty is evaluated from a small number of indication values (regarded as 
instances of an indication quantity characterized by a Gaussian distribution), the 
corresponding distribution can be taken as a t-distribution. Other considerations apply when 
the indication values are not obtained independently. (See ISO/IEC GUIDE 98-3 Annex G) 
 
 
For a Type B evaluation of uncertainty, often the only available information is that X lies in a 
specified interval [a, b]. In such a case, knowledge of the quantity can be characterized by a 
rectangular probability distribution with limits a and b (figure 4.2). If different information were 
available, a probability distribution consistent with that information would be used. 
 
Estimation of type B uncertainties is often based on calculations, experience, calibration, etc. 
 
The final resulting value consists of the measured value + the input quantity for the 
uncertainty factor, δ1 to δi 
              
 Yfinal = Ymeas + δ1 + δ2 + δ3 + δ4 +··········+ δi                                                          (4) 
  
The uncertainty contribution on the measurand due to the input quantity δi is ci µi, where ci is 
the sensitivity coefficient and µi the uncertainty. 
 
Sensitivity coefficients c1……cN describe how the estimate y of Y would be influenced by 
small changes in the estimates x1…..xN  of the input quantities X1……XN. For the 
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measurement function (1), ci equals the partial derivative of the first order of f with respect of 
Xi, evaluated at X1 = x1, X2 = x2, etc. For the linear measurement function 
 
                            Y = c1X1 +……….+cNXN         (5) 
                                                                              
with   X1……XN independent, a change in xi equal to µi(xi) would give a change ci µi(xi) in y. 
This statement would generally be approximate for the models (1) and (2). The relative 
magnitudes of the terms |ci| µi(xi) are useful in assessing the respective contributions from the 
input quantities to the standard uncertainty µ(y) associated with y. 
 
The sensitivity coefficients show how the variables in (3) will influence the magnitude of the 
result of y, 
They function as a multiplier used to convert the uncertainty components to the right units 
and magnitude for the uncertainty analysis.  
 
If there is no need for a sensitivity coefficient, for example if the input quantities or 
uncertainty contributors are all reported in the same unit of measure. In such cases, the 
sensitivity coefficient can be set to 1. 
 
The combined standard uncertainty µc(y) will then be the positive square roots of the 
combined variances: 
 
                                  µc(y) = √∑µ2                                                                      (6) 
 
 
The combined standard uncertainty is expressed as the standard deviation of the 
measurand. 
 
The expanded standard uncertainty, U, is calculated by multiplying the combined standard 
uncertainty, µc(y), with a coverage factor, k, for the chosen coverage probability:   
 
                                      U = k· µc(y)                                                                                                           (7) 
 
 
The coverage factor can be chosen such that the result U can be interpreted as the width of 
a certain confidence interval (although the GUM states that this is statistically not totally true).  
Normally, the k factor lies between 2 and 3, which correspond to a level of confidence of 
approximately 95 % or 99 %. However, in other cases k can also be less than 2.  
The result of the measurement is then conveniently expressed as: 
  
                                         Y = y ± U                                                                        (8) 
                                                      
 
For practical reasons, a table with an uncertainty budget should be set up, where all relevant 
quantities are defined. An example of such table is shown, below, taken from an ISO 
standard to measure the stationary sound pressure level from road vehicles5. 
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Table 4.1 Uncertainty budget for determination of reported sound pressure level5 

Quantity Estimate 
     dB 

Standard 
uncertainty, µi,              
       dB 

Probability 
distribution 

Sensitivity 
coefficient,                     
       ci 

Uncertainty 
contribution, ci µi,   
    dB 

LAmeas, i LAmeas, i - - - - 
      δ1 - - - - - 

δ2 - - - - - 
δ3 - - - - - 
δ4 - - - - - 
δ5 - - - - - 
δ6 - - - - - 

 
 
 

6. ISO 5725 approach 
 
ISO 5725 – Accuracy (trueness and precision) of measurement methods and results2. 
 
The method consists of 6 parts: 
Part 1:  General principles and definitions 
Part 2: Basic method for the determination of repeatability and reproducibility of a standard 
measurement method 
Part 3: Intermediate measures of the precision of a standard measurement method 
Part 4: Basic methods for the determination of the trueness of a standard measurement 
method 
Part 5: Alternative methods for the determination of the precision of a standard measurement 
method 
Part 6: Use in practice of accuracy values 
  
This standard is primarily suited for inter- or intra-laboratory comparisons of results. 
 
The following is a basic summary of the statistical model given in Part 1 of the standard and 
from UTAC6: 
 
For estimation of the accuracy (trueness and precision) of a measurement method, one can 
assume that every test result, Y, is the sum of three components: 
 
Yij = m + Li + ɛij                                                                                                         (9)  
 
 
where: 
Yij is the jth test result from laboratory i  
m is the general mean (expectation); 
Li is the laboratory effect i, I = 1 to p, with variance σL

2; 
ɛij is the residue (random error) on the jth result from laboratory I, j to n, with variances:  
 
var(L) = σL

2                                                                                                                   (10) 
var(ɛ) = σɛ

2                                                                                                            (11)  
 
Methods are given in Part 3 for measuring the size of some of the random components of L. 
In general, L, can be considered as the sum of both random and systematic errors. 
 
Within a single laboratory, its variance under repeatable conditions is called the within-
laboratory variance and is expressed as: 
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σL
2   = var(ɛ) = σW

2                                                                                                 (12) 
 
This arithmetic mean is taken over all those laboratories taking part in the accuracy 
experiment which remain after outliers have been removed. 
 
When this basic model is adopted, the repeatability variance is measured directly as the 
variance of the error term ɛ, but the reproducibility variance depends on the sum of the 
repeatability variance and the between-laboratory variance in (10). 
 
For precision evaluations: 
- Repeatability standard deviation: σr = σɛ 
- Reproducibility standard deviation: σR

2
 = σL

2 + σr
2   

 
Variance component estimation: 

- Repeatability:  sr = sɛ 

- Reproducibility: sR
2 = sɛ

2 + sL
2
 

 
For trueness evaluations: 

 
                                                                                              (13)                                                                                                                  

 
where µ is the reference value if it exists                
Estimated by:   
                                                                                                                    

                                                                                                        (14) 
 
The combined uncertainty µc(y) comes from the values of precision: 
 
- in conditions of repeatability: µc(y) = sɛ  
- in conditions of reproducibility: µc(y) = sR  

 
The expanded uncertainty: U = k· µc(y)                                                                  (15) 
 
Where k is the chosen coverage factor. 
 
 
 

7. Example of estimation of calculation of expanded uncertainty – UNECE 
Reg.51.03 and ISO 362-1. 

 
 
In UNECE Reg.51.03, the test method (Annex 3) is based on two driving conditions; a 
constant speed test, Lcrs, and a wide-open throttle acceleration test, Lwot, to determine the 
final type-approval level, Lurban. 
 
In the table7 below, the impact of the different quantities on these indicators has been 
estimated for the Run-to-run, Day-to-day, Site-to-site and Vehicle-to-vehicle situations. 
Some of the different impacts are based on calculations from tolerances in the regulations, 
while others are based on experiences. Based on the probability distribution, the variance 
and the standard deviation is calculated. For each of the quantities, their contribution (in %) 
has been calculated and the colour scheme makes it easy to understand the influence of the 
quantity to the total uncertainty. Some of these quantities can be compensated for, like the 
influence of temperature and test track variations, while other is of random type, like 
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instrumentation accuracy and cannot be compensated. In the example shown below, the 
estimated total expanded uncertainty has been calculated to ± 3.45 dB for a coverage factor 
of k = 2 (95 % level of confidence). 
 
 
 
                         Table 6.1 Example of calculation of uncertainties for UNECE Reg.51.037 

 
 

 

 
 
 
In ISO 362-1, the appendix dealing with the measurement uncertainty has recently been 
updated in the ongoing revision. 
In table 6.2, the uncertainty budget for the parameters influencing the total expanded 
uncertainty is listed. 
 
 
 
 
 
 
 
 

Lwot Lcrs

Micro climate wind effect 1.60 1.50 1.57 gaussian 0.15 0.392 5.1%

Deviation from centered driving 0.50 0.50 0.50 rectangular 0.02 0.144 0.7%

Start of acceleration 0.60 0.00 0.40 rectangular 0.01 0.114 0.4%

Speed variations of +/- 1km/h 0.50 0.50 0.50 rectangular 0.02 0.144 0.7%

Load variations during cruising 0.00 1.00 0.34 gaussian 0.01 0.085 0.2%

Varying background noise 0.40 0.40 0.40 rectangular 0.01 0.115 0.4%
Variation on operating temperature of engine
and tyres

0.80 0.80 0.80 rectangular 0.05 0.231 1.8%

Barometric pressure (Weather +/-30 hPa) 0.70 0.00 0.46 gaussian 0.01 0.116 0.4%

Air temperature effect on tyre noise (5-10°C) 0.00 0.00 0.00 rectangular 0.00 0.000 0.0%

Air temperature effect on tyre noise (0-40°C) 2.20 3.60 2.67 rectangular 0.60 0.772 20.0%

Varying background noise during measuremnt 0.00 0.00 0.00 rectangular 0.00 0.000 0.0%

Air intake temperatuire variation 1.60 0.00 1.06 rectangular 0.09 0.305 3.1%

Residual humidity on test track surface 0.90 2.10 1.31 rectangular 0.14 0.377 4.8%

Altitude (Location of Test Track) 100 hPa/1000m 0.70 0.00 0.46 rectangular 0.02 0.134 0.6%

Test Track Surface 3.40 5.50 4.11 rectangular 1.41 1.187 47.3%

Microphone Class 1 IEC 61672 1.00 1.00 1.00 gaussian 0.06 0.250 2.1%

Sound calibrator IEC 60942 0.50 0.50 0.50 gaussian 0.02 0.125 0.5%

Speed measuring equipment continuous at PP 0.10 0.10 0.10 rectangular 0.00 0.029 0.0%
Acceleration calculation from vehicle speed
measurement

0.50 0.50 0.50 rectangular 0.02 0.144 0.7%

Production Variation Tyre and aging of tyres 0.80 1.50 1.04 gaussian 0.07 0.259 2.3%

Production Variation in Power 0.40 0.40 0.40 rectangular 0.01 0.115 0.4%

Battery state of charge for HEVs 0.00 0.00 0.00 rectangular 0.00 0.000 0.0%
Production Variability of Sound Reduction
Components

1.10 0.00 0.73 gaussian 0.03 0.182 1.1%

Impact of variation of vehicle mass 1.60 1.60 1.60 rectangular 0.21 0.462 7.2%

2.98 1.73 100.0%

Coverage Factor

k=2　(95%) 1.73 3.45

Overall
Combined

Uncertainty +/-

Expanded
uncertainty

(95%) +/-

Vehicle
to

Vehicle
0.57

Day
to

Day
0.92

Site
to

Site
1.24

Run
to

Run
0.53

Situation Input Quantity

estimated deviations
of the meas. result

(peak-peak) Impact on
Lurb

Probability
Distribution

Variance
Standard
deviation

Share
[%]

Combined
standard

uncertainty
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Table 6.2 Uncertainty budget for determination of urban sound pressure level 
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dB dB dB  +/-

dB 
+/-
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Run 
to 

Run 

Micro climate wind effect 0,5 0,5 0,50  gaussian 0,13  

0,6  

DRIVER #1: Deviation from centered driving 0,5 0,5 0,50  rectangular 0,14  

DRIVER #2: Start of acceleration 0,5 0,5 0,50  rectangular 0,14  

DRIVER #3: Speed variations of +/- 1km/h 0,3 0,3 0,30  rectangular 0,09  

DRIVER #4: Load variations during cruising 0,3 0,5 0,37  gaussian 0,09  

Varying background noise 0,1 0,1 0,10  rectangular 0,03  

Variation on operating temperature of engine 
(WOT) and tyres (WOT&CRS) ==> See ISO 362-1 
NOTE 

0.25 0,25 0,25  rectangular 0,07  

 
 

Day 
to 

Day 

Barometric pressure (Weather +/- 30 hPa) 1,0 0,0 0,66  gaussian 0,17  

1,7  

Air temperature effect on tyre noise (5-10°C) 0,0 0,0 0,00  rectangular 0,00  

Air temperature effect on tyre noise (10-40°C) 2,0 2,0 2,00  rectangular 0,58  

Varying background noise during measurement 1,0 1,0 1,00  rectangular 0,29  

Air intake temperature variation 1,5 0,0 0,99  rectangular 0,29  

Residual humidity on test track surface 1,0 1,0 1,00  rectangular 0,29  

 
 

Site 
to 

Site 

Altitude (Location of Test Track) -100 
hPa/1000m 
(from 1015 to 915 hPa) 

1,00 0,0 0,66  rectangular 0,19  

2,7  

Test Track Surface 3,5 5,0 4,01  rectangular 1,00  

Microphone Class 1 IEC 61672 0,6 0,6 0,60  gaussian 0,15  

Sound calibrator IEC 60942 0,8 0,8 0,80  gaussian 0,20  

Speed measuring equipment continuous at PP 0,1 0,1 0,10  rectangular 0,03  

Acceleration calculation from vehicle speed 
measurement 0,5 0,0 0,33  rectangular 0,10  
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Vehicle 
to 

Vehicle 

Production variation of tires, including 
aging of tires until 1 year 0,80 1,50 1,04  gaussian 0,259 

0,57 

Production variation in engine power 
output 0,40 0,40 0,40  rectangular 0,115  

Production variability of sound reduction 
components 1,1 0,0 0,73  rectangular 0,182 

Vehicle mass variation from mass in 
running order 1,6 1,6 1,60  rectangular 0,462 
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