Forschungspaket: Lärmmarme Beläge innerorts EP 8: Akustische Wirkung betrieblicher Reinigungsmassnahmen bei lärmmarmen Belägen

Paquet de recherche: Revêtements peu bruyants en zone urbaines EP 8: L’efficacité acoustique des mesures de nettoyage des revêtements peu bruyants

Grolimund + Partner AG
Emanuel Hammer, Dr. sc. ETH
Erik Bühlmann, Dipl. Geograf, Dipl. Akustiker SGA
Toni Ziegler, Dipl. Natw. ETH

Forschungsprojekt ASTRA 2013/003 auf Antrag des Bundesamtes für Strassen (ASTRA)

April 2016
Der Inhalt dieses Berichtes verpflichtet nur den (die) vom Bundesamt für Strassen unterstützten Autor(en). Dies gilt nicht für das Formular 3 "Projektabschluss", welches die Meinung der Begleitkommission darstellt und deshalb nur diese verpflichtet.

Bezug: Schweizerischer Verband der Strassen- und Verkehrsfachleute (VSS)

Le contenu de ce rapport n’engage que les auteurs ayant obtenu l’appui de l’Office fédéral des routes. Cela ne s’applique pas au formulaire 3 « Clôture du projet », qui représente l’avis de la commission de suivi et qui n’engage que cette dernière.

Diffusion : Association suisse des professionnels de la route et des transports (VSS)

La responsabilità per il contenuto di questo rapporto spetta unicamente agli autori sostenuti dall’Ufficio federale delle strade. Tale indicazione non si applica al modulo 3 "conclusione del progetto", che esprime l’opinione della commissione d’accompagnamento e di cui risponde solo quest’ultima.

Ordinazione: Associazione svizzera dei professionisti della strada e dei trasporti (VSS)

The content of this report engages only the author(s) supported by the Federal Roads Office. This does not apply to Form 3 ‘Project Conclusion’ which presents the view of the monitoring committee.

Distribution: Swiss Association of Road and Transportation Experts (VSS)
Forschungspaket: Lärmmarme Beläge innerorts EP 8: Akustische Wirkung betrieblicher Reinigungsmassnahmen bei lärmmarmen Belägen

Paquet de recherche: Revêtements peu bruyants en zone urbaines EP 8: L'efficacité acoustique des mesures de nettoyage des revêtements peu bruyants

Grolimund + Partner AG
Emanuel Hammer, Dr. sc. ETH
Erik Bühlmann, Dipl. Geograf, Dipl. Akustiker SGA
Toni Ziegler, Dipl. Natw. ETH

Forschungsprojekt ASTRA 2013/003 auf Antrag des Bundesamtes für Strassen (ASTRA)

April 2016
Impressum

Forschungsstelle und Projektteam
Projektleitung
Toni Ziegler

Mitglieder
Erik Bühlmann
Dr. Emanuel Hammer

Begleitkommission
Präsidentin
Luzia Seiler-Scherer

Mitglieder
Sabine Würmli
Hans-Peter Beyeler
Sophie Hoehn
André Magnin
Olivier Jacobi
Benedikt Eberle
Cyril Durussel
Nicolas Gouneaud
Martin Bürgi (bis 2014)
Hanspeter Gloor
Dejan Lukic
Yves Pillonel

KO-Finanzierung des Forschungsprojekts
Bundesamt für Umwelt (BAFU)

Antragsteller
Bundesamt für Strassen (ASTRA)

Bezugsquelle
Inhaltsverzeichnis

Impressum ... 4
Zusammenfassung .. 7
Résumé .. 9
Summary ... 11

1 Einleitung ... 13
 1.1 Ausgangslage und Problemstellung ... 13
 1.2 Ziel und Ergebnis des Forschungsprojektes ... 13
 1.3 Organisation, Beteiligte und Interviewpartner ... 13
 1.3.1 Organisation und Beteiligte ... 13

2 Lärmarme Strassenbeläge ... 15
 2.1 Definition ... 15
 2.2 Lärmarme Strassenbeläge in der Schweiz .. 15
 2.2.1 Auf Autobahnen (im Hochgeschwindigkeitsbereich) .. 15
 2.2.2 Im Innerortsbereich (im Niedriggeschwindigkeitsbereich) 16
 2.3 Schmutzeintrag auf lärmmamen Strassenbelägen .. 16
 2.4 Bisherige Reinigungsversuche auf lärmmamen Strassenbelägen 17

3 Reinigungsmassnahmen ... 19
 3.1 Reinigungsverfahren ... 19
 3.2 Mögliche Auswirkungen durch Belagsreinigung .. 20

4 Messkampagne .. 21
 4.1 Auswahl der Messstrecken .. 21
 4.2 Messverfahren .. 21
 4.2.1 Rollgeräusch ... 22
 4.2.2 Schallabsorption .. 22
 4.2.3 Luftströmungswiderstand ... 22
 4.2.4 Luftpermeabilität ... 23
 4.2.5 Sandfleck ... 24
 4.2.6 Wasserausfluss ... 25
 4.3 Vorbereiten Messstrecken ... 25
 4.4 Optimierung der Reinigungsverfahren ... 25

5 Resultate ... 27
 5.1 Gewählte Feineinstellung der Reinigungsverfahren .. 27
 5.2 Rollgeräuschpegel ... 29
 5.3 Schallabsorptionsgrad .. 32
 5.4 Oberflächentexturtiefe ... 33
 5.5 Luftströmungswiderstand ... 34

6 Diskussion ... 37
 6.1 Wirkung auf Lärmminderung .. 37
 6.2 Wirkung bezüglich Schallabsorption .. 38
 6.3 Wirkung bezüglich Oberflächentextur ... 38
 6.4 Wirkung bezüglich Porenzugänglichkeit ... 38

7 Schlussfolgerungen .. 41
 7.1 Hauptergebnisse .. 41
 7.2 Empfehlungen .. 41
7.3 Ausblick .. 41

Anhänge .. 43
Glossar ... 57
Literaturverzeichnis ... 59
Projektabschluss .. 61
Verzeichnis der Berichte der Forschung im Strassenwesen ... 65
Zusammenfassung

Da die beiden Belagsklassen 4 mm und 8 mm spezifische Porenstrukturen aufweisen ist denkbar, dass für die beiden Klassen unterschiedliche Einstellungen der Reinigungsverfahren benötigt werden. Deshalb wurden vor der Reinigung auf beiden Belagsklassen verschiedene Einstellungen getestet und für die jeweiligen Belagsklassen optimiert. Für das Verfahren Kehren wurde für die definitive Reinigung der Beläge die gängige Drehzahl, wie sie für die kommunale Reinigung eingestellt ist, verwendet.

Es wurde eine maximale Wirkung der Reinigungsverfahren, auf die lärmm reduzierenden Eigenschaften der Beläge, von maximal 0.8 dB festgestellt. Auf 4 mm Belägen konnten sowohl mit den Reinigungsverfahren Rotoplast und Sprühbalken eine Wirkung erzielt werden. Auf 8 mm Belägen ist das Sprühbalken Verfahren am effektivsten. Für beide Belagsklassen führt das Reinigungsverfahren Kehren zu keiner Verbesserung der lärmm reduzierenden Eigenschaften. Die Wirkung der Reinigung auf 4 mm Belägen zeigt sich auf konstante Weise in erster Linie durch eine Verbesserung der Luftströmungseigenschaften und in geringerem Masse der Schallabsorptions-Eigenschaften. Auf 8 mm Belägen ist die Wirkung tendenziell geringer. Aufgrund Inkonsistenz in den verschiedenen Messresultaten können keine gesicherten Schlussfolgerungen bezüglich der Wirkung der Reinigung auf die Schallentstehungsmechanismen und Schallabsorption gemacht werden.
Aus den Resultaten konnten folgende Empfehlungen erarbeitet werden:

- Aufgrund der geringfügigen Wirkung auf die lärmreduzierenden Eigenschaften sollte die Planung des Reinigungsunterhalts von lärmarmen Belägen auf sorgfältigen Kosten/Nutzen-Analysen basieren.
- Auf 4 mm Belägen wird empfohlen die Reinigungsverfahren Sprühbalken oder Rotoplast jeweils mit Absaugvorrichtung einzusetzen.
- Auf 8 mm Belägen wird empfohlen das Reinigungsverfahren Sprühbalken mit Absaugvorrichtung anzuwenden.
- Generell aber insbesondere bei älteren Belägen sollte sichergestellt werden, dass es durch die Anwendung von Hochdruckreinigungsverfahren zu keiner Beschädigung der Belagsoberfläche kommt.

Obwohl ein geringfügiger Reinigungseffekt bezüglich den lärmreduzierenden Eigenschaften erzielt werden konnte, war es nicht möglich die genaue Lage des Schmutzeintrages im Porengefüge des Strassenbelages zu eruieren. Als Fokus zukünftiger Forschungsanstrengungen sollte die genaue Lage und Eigenschaften des eingetragenen Schmutzes analysiert werden.
Résumé

Plusieurs tronçons routiers en Suisse ont des revêtements de bonne qualité acoustique, que l'on nomme revêtements phono absorbants. On sait que la qualité acoustique de ces revêtements s'estompe avec le temps. Ce projet de recherche investigue et quantifie l'amélioration possible de cette évolution acoustique à travers la mise en place de différentes pratiques d'entretien. Le choix des mesures d'entretien considérées dans ce projet a été fait de manière à ce que le plus grand nombre d'entre elles soient actuellement en pratique. Les mesures suivantes ont été retenues: machine de balayage comportant un aspirateur, rampe de pulvérisation (nettoyage à haute pression) puis aspiration, Rotoplast (nettoyage à haute pression avec bras tournant) puis aspiration.

L'objectif de ce projet de recherche est la détermination quantitative d'une amélioration de l'évolution acoustique des revêtements phono absorbants par le biais de différentes pratiques d'entretien en zone urbaine. L'accent est mis tout d'abord sur la réduction du niveau sonore obtenue immédiatement après l'entretien, mais aussi sur la durabilité de ces mesures. Le résultat principal de l'étude est l'élaboration de recommandations d'entretien spécifiques à certains types de revêtement. L'objectif est d'améliorer l'évolution acoustique de ces revêtements de manière durable.

Pour le projet de recherche, trois tronçons d'étude ont été sélectionnés avec une taille maximale de grain de 4 mm et trois autres avec une taille maximale de grains de 8 mm. Cette sélection se base sur l'analyse de la base de données de G+P AG, qui contient des informations sur l'état acoustique de plus de 350 revêtements, déterminés sur plusieurs années avec la méthode CPX. Cela permet de comparer le mesurage actuel (généralement datant de 2014) et celui d'origine, peu de temps après l'installation du revêtement. Les revêtements choisis sont restés intacts, avec peu ou pas d'éclatement de granulats.

Puisque les catégories de revêtements de 4 mm et de 8 mm ont des structures de pores différentes, différentes caractéristiques d'entretien ont été testées et optimisées pour chacune de ces deux classes. Pour la pratique du balayage, c'est le nombre de tours tel que défini pour l'entretien communal qui est utilisé pour l'entretien définitif.

Il a été constaté que l'effet maximal des mesures d'entretien sur la qualité acoustique des revêtements est au maximum de 0.8 dB. Pour les revêtements de type 4 mm, les techniques d'entretien au Rotoplast ou par rampe de pulvérisation ont une efficacité acoustique. Pour les revêtements de type 8 mm c'est la rampe de pulvérisation qui est la plus efficace. Pour les deux types de revêtement cependant, le balayage n'entraîne pas d'amélioration des propriétés acoustiques. La réduction du bruit pour les revêtements de type 4 mm se traduit principalement par un flux d'air constamment amélioré, et dans une moindre mesure par une meilleure capacité d'absorption acoustique. Pour les revêtements de type 8 mm, ces effets sont moins importants. L'inhomogénéité des résultats des mesures ne permet pas de tirer de conclusions avérées sur les mécanismes de production et d'absorption du son. Les recommandations suivantes découlent des résultats obtenus.

- La planification de l'entretien des revêtements phono absorbants devrait être basée sur un bon rapport coût/utilité.
- L'entretien par rampe de pulvérisation ou Rotoplast, tous deux suivis de l'aspiration est recommandé pour les revêtements de type 4 mm.
- Pour les revêtements de type 8 mm, un entretien par rampe de pulvérisation puis aspiration est recommandé.
- Il faut veiller à ne pas endommager la surface du revêtement lors du nettoyage à haute pression, tout particulièrement lors de l’entretien de revêtements âgés.

Bien qu'un léger impact de l’entretien sur l’amélioration des propriétés acoustiques d’un revêtement ait pu être montré, l’emplacement exact de l’entrée de la salissure dans les pores à la surface du revêtement reste à déterminer. La suite des recherches devrait...
donc se porter sur la localisation exacte et l’analyse des caractéristiques de cette salissure.
Summary

There are road surfaces with good acoustic properties at several road sections in Switzerland, so-called low-noise road surfaces. It is known that the acoustic properties decrease with age. In the framework of this research project the improvement of the acoustical properties by applying several street cleaning techniques to the low noise road surfaces was analysed and quantified. Care was taken to consider a large variety of established street cleaning techniques in our study. Following techniques have been selected for our analysis: Sweeping with a subsequent vacuuming, spray bars (high-pressure cleaner) with a subsequent vacuuming and Rotoplast (high-pressure cleaner with a rotating arm) with a subsequent vacuuming.

The goal of this research study is to quantify the improvement of the acoustic effect of low noise road surfaces in built-up areas achieved due to the selected street cleaning techniques. Thereby, the accessible level reductions directly after the cleaning process as well as the acoustical durability achieved due to the street cleaning techniques are the main focus of this study. The main results are pavement specific recommendations to the cleaning maintenance of low noise road surface with the goal to sustainable improve the acoustic properties of these surfaces.

Two times three test tracks were selected having maximum aggregate size of 4 mm and 8 mm, respectively. The selection is based on the analysis of the available database at G+P AG containing more than 350 road surfaces its acoustic condition was measured with the CPX method. The actual measurement (usually from the year 2014) was compared with the initial measurement performed directly after installation of the surface. Particular emphasis was laid on the intactness of the surfaces as well as the low or not existent outbreak of aggregates.

Since the two surface classes of 4 mm and 8 mm feature specific pore structures, it is possible that the two classes need different settings of the street cleaning techniques. Therefore, several settings were tested and optimized before the actual cleaning of the selected surfaces. The common rotation speed used for municipal cleaning was chosen for the technique sweeping.

A maximum effect of the street cleaning techniques applied on low noise road surfaces at a maximum of 0.8 dB(A) was determined. Both cleaning techniques Rotoplast and spray bars resulted in an effect at the 4 mm surface class. At the surface class of 8 mm spray bars resulted in the most effective cleaning technique. The cleaning technique sweeping did not result in an improvement of noise reducing properties for none of the surface classes. The effect of cleaning the 4 mm surface class was consistently defined by an improvement of the airflow properties and to a lesser extent by the sound absorption capacity. The determined effect on 8 mm surfaces was generally lower. Due to inconsistency within the measurement results no firm conclusions can be drawn concerning the cleaning effect on sound generation mechanisms and sound absorption.

Following recommendations were derived from the results:

- Due to the low effect of the street cleaning techniques on the noise reducing abilities of the surfaces, the planning of the street cleaning maintenance of low noise road surfaces should be based on a thoroughly cost-benefit analysis.
- It is recommended to apply the techniques Rotoplast and spray bars, each having a subsequent vacuuming system, at 4 mm surface classes.
- The street cleaning technique spray bars with a subsequent vacuuming is recommended to be applied at the 8 mm surface class.
- Generally, we consider it necessary to ensure that the application of high-pressure street cleaning techniques do not destroy the road surface - especially with regard to older road surfaces.

Although the application of street cleaning techniques on low noise road surfaces resulted in a marginal effect regarding a reduction of noise reducing abilities, it was not
possible to determine the exact positions of dirt in the pore structure of the road surface. For future research activities we recommend to analyse the exact position and properties of the incorporated dirt in the porous structure.
1 Einleitung

1.1 Ausgangslage und Problemstellung

Auf mehreren Strassenabschnitten in der Schweiz liegen Beläge mit guten akustischen Eigenschaften; sogenannte lärarmarme Beläge. Es ist bekannt, dass die akustischen Eigenschaften mit dem Alter abnehmen [1], [2]. Mit diesem Forschungsprojekt wurde die mögliche Verbesserung der akustischen Wirkung durch die Anwendung verschiedener Reinigungsmassnahmen getestet und quantifiziert.

1.2 Ziel und Ergebnis des Forschungsprojektes

Ziel des Forschungspaketes „Lärarmarme Beläge innerorts“ ist:

- den Einsatz lärmarmer Strassenbeläge zu fördern und einen weiteren Entwicklungsschub bei diesen Belägen zu bewirken;
- die Akzeptanz gegenüber lärarmen Belägen zu fördern und mit den betroffenen Strasseneigentümern eine Win-Win-Situation zu erreichen.

1.3 Organisation, Beteiligte und Interviewpartner

1.3.1 Organisation und Beteiligte

Das Forschungspaket „Lärarme Beläge innerorts“ ist in drei Teilprojekte untergliedert (Abb. 1):

- TP1: Forschung und Innovation
Die Phase 1 im Teilprojekt TP1 beinhaltet fünf Einzelprojekte:

- EP1: Rezepturen für lärmarme Beläge
- EP2: Labortechnische Bestimmung der Dauerhaftigkeit lärmärmer Beläge
- EP3: Betrieb und Unterhalt lärmärmer Beläge
- EP4: Labormethoden für die Bestimmung akustischer Eigenschaften lärmärmer Beläge
- EP5: Verbesserung der Genauigkeit akustischer Messmethoden

Die Phase 2 im Teilprojekt TP1 wurde später gestartet und beinhaltet drei Einzelprojekte:

- EP8: Akustische Wirkung betrieblicher Reinigungsmassnahmen bei lärmarmen Belägen
- EP10: Sensitivität der akustischen Eigenschaften lärmärmer Beläge aufgrund der Variabilität bei der Herstellung

Der vorliegende Bericht beschreibt die Ergebnisse des „EP8: Akustische Wirkung betrieblicher Reinigungsmassnahmen bei lärmarmen Belägen“.

Abb. 1: Organigramm Forschungspaket "lärmarme Beläge innerorts"
2 Lärmarme Strassenbeläge

2.1 Definition

![Diagramm der Definition lärmarmer Beläge](image)

Abb. 2: Schematische Darstellung der Definition lärmarmer Beläge (VSS/SR 640425)

2.2 Lärmarme Strassenbeläge in der Schweiz

2.2.1 Auf Autobahnen (im Hochgeschwindigkeitsbereich)

Im Jahre 1979 wurde erstmals ein Versuch gestartet offenporige Beläge auf Strassen einzubauen, sogenannte PA-Beläge (porous asphalt). Diese Beläge versprachen ein hohes Lärmminderungspotenzial sowie eine durch die erhöhte Drainagefähigkeit ermöglichte Verbesserung der Verkehrssicherheit im Vergleich zu dichten Asphaltdeckschichten [7].

Werden PA-Beläge im Innerortsbereich eingebaut, weisen sie bereits nach geringer Zeit fortschreitende Verstopfung auf. Deshalb werden diese Beläge nur auf Hochgeschwindigkeitsstrassen mit homogenem fließendem Verkehr eingebaut. Im Innerortsbereich werden PA-Beläge im Allgemeinen nicht mehr eingesetzt.
2.2.2 Im Innerortsbereich (im Niedriggeschwindigkeitsbereich)

Im vorliegenden Forschungsprojekt wurde eine Kategorisierung der Beläge mit Grösstkorngrösse 4 mm (SDA 4) und 8 mm (SDA 8) vorgenommen. Die Kategorisierung erfolgte aufgrund der Annahme, dass die beiden Belagsklassen eine unterschiedliche Porenstruktur aufweisen können und dabei abweichendes Verhalten bei Schmutzeintrag und Reinigung haben können.

Bis heute (Stand 2014) wurden über 370 lärarme Beläge im Innerortsbereich eingebaut (siehe Abb. 3).

Abb. 3: Realisierte lärarme Beläge im Innerortsbereich der Schweiz (Stand 2014).

Die Fragestellung des vorliegenden Forschungsprojektes bezieht sich einzig auf lärarme Beläge im Innerortsbereich (SDA 4 und SDA 8 Beläge).

2.3 Schmutzeintrag auf lärarmen Strassenbelägen

2.4 Bisherige Reinigungsversuche auf lärarmen Strassenbelägen

3 Reinigungsmassnahmen

3.1 Reinigungsverfahren

Im Forschungsprojekt EP3 wurden verschiedene Reinigungsverfahren zusammengetragen und in folgende Kategorien eingeteilt: Kehren mit Absaugvorrichtung, sprengen/schwemmen (Niederdruckreinigung ohne Aufnahme), Hochdruckreinigung mit Wiederaufnahme und Schrubbsaugverfahren. Nach einer Evaluation verschiedener Reinigungsfirmen wurde zusammen mit der Firma Hügli AG die oben genannten und weiteren Reinigungsverfahren für unser Forschungsprojekt evaluiert. Bei der Auswahl der Reinigungsverfahren wurde darauf geachtet, dass eine möglichst grosse Bandbreite an gängigen Verfahren getestet werden kann. Folgende Verfahren wurden schlussendlich ausgewählt:

- Kehren mit anschliessendem Absaugen (Standardverfahren als Referenz; siehe Abb. 4)

Abb. 4: Reinigungsverfahren kehren mit anschliessendem Absaugen

- Sprühbalken (Hochdruckreinigung) anschliessendem Absaugen (siehe Abb. 5)

Abb. 5: Reinigungsverfahren Sprühbalken mit anschliessendem Absaugen

- Rotoplast (Hochdruckreinigung mit drehbarem Arm) anschliessendem Absaugen (siehe Abb. 6)

Abb. 6: Reinigungsverfahren Rotoplast mit anschliessendem Absaugen
Bei Testmessungen auf zwei Strecken wurden die Reinigungsverfahren für die beiden Belagsklassen mit Größtkorngrösse 4 mm und 8 mm getestet und optimiert (siehe Kapitel 4.2.5).

3.2 Mögliche Auswirkungen durch Belagsreinigung

4 Messkampagne

4.1 Auswahl der Messstrecken

Bei der Auswahl der Strecken wurde darauf geachtet, dass die Beläge intakt waren und wenig bis keine Kornausbrüche aufweisen. Dazu dürfen auf einem Belag lediglich geringfügige Zunahmen im Bereich der tiefen Frequenzen nachgewiesen werden. Eine Zunahme bei tiefen Frequenzen bedeutet eine lärmtechnische Verschlechterung der Oberflächentextur. Tab. 1 zeigt die sechs ausgewählten Messstrecken anhand der oben genannten Kriterien.

Die in Tab. 1 ausgewählten Messstrecken wurden vorgängig visuell begutachtet um allfällige Beschädigungen seit der letzten Messung ausschliessen zu können.

4.2 Messverfahren

Um die Effektivität der Reinigungsverfahren zu evaluieren wurden verschiedene Messverfahren angewendet:

- Akustische Eigenschaften: Rollgeräuschmessungen CPX (close proximity), Schallabsorptionsmessungen (PU-Sonde);
- Porenzugänglichkeit: Luftströmungswiderstand, Luftpermeabilität;
- Oberflächentextureigenschaften: Sandfleckverfahren, Wasserausflussverfahren.

1 im Vergleich zur Erstmessung CPX im Jahr 2009
4.2.1 Rollgeräusch

Aufgrund erhöhter Genauigkeitsansprüche wurden, abweichend zu den Vorgaben der Norm, die Anzahl Messfahrten pro Testreifensatz von zwei auf fünf erhöht. Die Messungen wurden vor der Reinigung und nach der Reinigung auf jedem Abschnitt (0 bis 3) durchgeführt.

4.2.2 Schallabsorption

Um die Effektivität der Reinigungsverfahren hinsichtlich der Reinigung blockierter Porenzugänge und verschmutzter Poren beurteilen zu können, werden Schallabsorptionsmessungen mit dem PU-Verfahren (gemäss [23]) durchgeführt. Die Messungen wurden vor der Reinigung und nach der Reinigung auf jedem Abschnitt (0 bis 3) durchgeführt. In der linken und rechten Radspur, sowie zwischen den Radspuren wurden pro Abschnitt jeweils sechs Einzmessungen verübt und gemittelt.

4.2.3 Luftströmungswiderstand
Der Luftströmungswiderstand gibt Aufschluss über den Hohlraumgehalt und der Verbindungsgrad der Poren innerhalb der Deckschicht des Strassenbelages. Je niedriger der Luftströmungswiderstand desto einfacher kann die Luft aus der Kontaktzone Reifen-
Fahrhahn entweichen oder hineingesogen werden, was gleichzeitig zu einer Abnahme des Luftströmungsschalls führt. Ein verbesserter Luftströmungswiderstand kann durch eine Optimierung der Oberflächentextur (mit einem gewissen Mass an Oberflächenrauheit) oder durch das Vorhandensein von untereinander verbundenen Hohlräumen im Straßenbelag erreicht werden.

Der Luftströmungswiderstand einer Deckschicht wird definiert als Quotient des Überdruckes in der Kammer zum Durchfluss. Der spezifische Strömungswiderstand wird definiert als Quotient des Überdruckes zur Strömungsgeschwindigkeit. Der spezifische Luftströmungswiderstand eines Strassenbelages wird empirisch bei einer Luftströmungsgeschwindigkeit von genau 0.0125 m/s bestimmt.

Charakteristisch für semi-poröse Beläge sind Werte <15'000 Pa*s/m für Beläge mit 4 mm Größtkorn und Werte <10'000 Pa*s/m für Beläge mit 8 mm Größtkorn. Typisch für offenporige Beläge sind Werte <5000 Pa*s/m für Beläge mit 4 mm Größtkorn und Werte <1000 Pa*s/m für Beläge mit 8 mm Größtkorn.

4.2.4 Luftpermeabilität

Für die Optimierung/Feineinstellung der Reinigungsverfahren wurde ein Messverfahren verwendet, welches ohne grossen Aufwand die Resultate rasch wiedergeben konnte und auf leicht nasser Fahrbahn noch zuverlässige Ergebnisse liefert. Dabei wurde das von Weibel AG eigen entwickelte Luftpermeabilitätsverfahren verwendet (siehe Abb. 9).
Die Anlage misst den Druckverlust in einem Druckbehälter, bei dem kontinuierlich Luft über einen abdichtenden Aufsatz in den Asphalt strömt. Mit dem Druckverlust pro Zeitsprung (1 s) wird eine Ersatzfläche berechnet, die Durchströmungsfläche. In unserem Projekt wurde die Durchströmungsfläche bei gemessenen 220 mbar berechnet.

4.2.5 Sandfleck

Mit dem Sandfleckverfahren wurde geprüft, ob die Makrotexturtiefe der Fahrbahnoberfläche durch die Reinigungsverfahren wiederhergestellt werden konnte. Dabei wurde ein Becher mit 30'000 mm3 Volumen Quarzsand auf den Belag gestreut und mit einem Verteilerwerkzeug gleichmäßig zu einem kreisförmigen Fleck verteilt (siehe Abb. 10), dessen Durchmesser gemessen wird. Das Sandvolumen wird durch die bedeckte Fläche dividiert, wobei man einen Wert für die mittlere Tiefe der Sandschicht erhält, d.h. eine mittlere Texturtiefe.

Abb. 9: Luftpermeabilitätsverfahren entwickelt von Weibel AG.

Abb. 10: Gleichmäßig verteilter Sand auf Belag für Messung der Makrotexturtiefe nach SN 640 511-1.
4.2.6 Wasserausfluss

Als weiteres Prüfverfahren für die Optimierung/Feineinstellung der Reinigungsverfahren, wurde das Wasserausflussverfahren nach Moore (SN 640 510b) angewendet. Mit diesem Verfahren konnte ohne grossen Aufwand der Wasserabfluss durch die Textur der Fahrbahnoberfläche gemessen werden. Dabei wurde die Zeitperiode gemessen, in welcher eine bestimmte Menge Wasser zwischen einem dünnen Abdichtungsring und der Oberflächentextur des Belages ausfliesst (siehe Abb. 11).

Abb. 11: Messverfahren Ausfluss nach Moore.

4.3 Vorbereiten Messstrecken

Abb. 12: Schematische Darstellung der unterteilten Messstrecke.

Um zu verhindern, dass allfällige akustische Inhomogenität im Strassenbelag zu Falschinterpretationen führen, werden vorgängig zu der Reinigung Nullmessungen gemacht. So kann die nach der Reinigung ermittelte larmreduzierende Wirkung direkt mit dem Ausgangszustand vor der Reinigung verglichen werden.

4.4 Optimierung der Reinigungsverfahren

Wie in Kapitel 3.1 erläutert, wurden drei Reinigungsverfahren für dieses Forschungsprojekt ausgewählt. Um die einzelnen Reinigungsverfahren für lärarme Beläge im Innerortsbereich zu optimieren werden verschiedene Einstellungen getestet. Da die beiden Belagsklassen 4 mm und 8 mm spezifische Porenstrukturen aufweisen ist
denkbar, dass für die beiden Klassen unterschiedliche Einstellungen der Reinigungsverfahren benötigt werden. Deshalb wurde vor der Reinigung auf der Gegenfahrspur in Villars-Sur-Glâne FR (4 mm) und Muhen AG (8 mm) verschiedener Einstellungen getestet. Die getesteten Einstellungen sind in Tab. 2 aufgelistet. Die Testfahrten wurden mit Fahrgeschwindigkeiten von ca. 2 km/h für Sprühbalken und *Rotoplast* und 10 km/h für die Reinigung mit Besen durchgeführt.

<p>| Tab. 2 Getestete Einstellungen für die Optimierung der Reinigungsverfahren |</p>
<table>
<thead>
<tr>
<th>Belagsklasse</th>
<th>Belagstyp</th>
<th>Ort</th>
<th>Reinigungsverfahren</th>
<th>Wasserdruck [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mm</td>
<td>Nanosoft 4</td>
<td>Villars-Sur-Glâne</td>
<td>Sprühbalken</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rotoplast</td>
<td>~190</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~650</td>
</tr>
<tr>
<td>8 mm</td>
<td>ACMR 8</td>
<td>Muhen</td>
<td>Sprühbalken</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rotoplast</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>480</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rotoplast doppelte Reinigung</td>
<td>480</td>
</tr>
</tbody>
</table>

Zur Auswahl der optimalen Einstellung wurden das Luftpermeabilitätsverfahren sowie die Wasserausflussverfahren auf den Testabschnitten angewendet und die Ergebnisse Vorort ausgewertet und verglichen.
5 Resultate

5.1 Gewählte Feineinstellung der Reinigungsverfahren

Für das Verfahren *Kehren* wurde für die definitive Reinigung der Beläge die gängige Drehzahl, wie sie für die kommunale Reinigung eingestellt ist, verwendet. Für die beiden Verfahren *Sprühbalken* und *Rotoplast* wurden die in Tab. 2 aufgelisteten Einstellungen mit dem Luftpermeabilitätsverfahren von Weibel AG und dem Ausfluss nach Moore evaluiert um die Effektivität der Feineinstellung der Reinigungsverfahren quantitativ bewerten zu können.

Abb. 13: Wasserausflussmessungen (oben; Ausfluss nach Moore, SN 640 510b) und Luftpermeabilitätsmessungen (unten) zur Optimierung/Feineinstellung des Wasserdruckes der beiden Reinigungsverfahren Sprühbalken und Rotoplast. Der schwarze Rahmen zeigt die jeweilige ausgewählte Feineinstellung.

der einzelnen Reinigungsverfahren zu erkennen. Aufgrund der Ergebnisse wurden folgende Feineinstellungen für die Hauptuntersuchung ausgewählt:

Für die 4 mm Belagsklasse wurde anhand der Messungen entschieden, den Sprühbalken mit einem Wasserdruck von 114 bar und 200 l/min zu verwenden, da beide Permeabilitätsverfahren eine Verbesserung mit höherem Druck zeigten. Für das Reinigungsverfahren Rotoplast wurde der höchstmögliche Wasserdruck von 650 bar und 80 l/min verwendet, da auch hier beide Permeabilitätsverfahren die bestmöglichen Resultate mit höchstem Druck zeigten.

Tab. 3 zeigt eine Zusammenfassung der gewählten Feineinstellungen der Reinigungsverfahren pro Belagsklasse.

<table>
<thead>
<tr>
<th>Belagsklasse</th>
<th>Reinigungsverfahren</th>
<th>gewählter Wasserdruck [bar]</th>
<th>Wassermenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mm</td>
<td>Sprühbalken mit Hecksauganlage</td>
<td>114</td>
<td>ca. 220 l/min</td>
</tr>
<tr>
<td></td>
<td>Rotoplast</td>
<td>650</td>
<td>ca. 80 l/min</td>
</tr>
<tr>
<td>8 mm</td>
<td>Sprühbalken mit Hecksauganlage</td>
<td>114</td>
<td>ca. 220 l/min</td>
</tr>
<tr>
<td></td>
<td>Rotoplast</td>
<td>480</td>
<td>ca. 80 l/min</td>
</tr>
</tbody>
</table>
5.2 Rollgeräuschpegel

<table>
<thead>
<tr>
<th>Ort</th>
<th>Veränderung der akustischen Wirkung [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PW (N1)</td>
</tr>
<tr>
<td>0</td>
<td>±0.0</td>
</tr>
<tr>
<td>1</td>
<td>-0.1</td>
</tr>
<tr>
<td>2</td>
<td>±0.0</td>
</tr>
<tr>
<td>3</td>
<td>+0.2</td>
</tr>
<tr>
<td>Thônex, Sapaphone 4 (2009)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>±0.0</td>
</tr>
<tr>
<td>1</td>
<td>±0.0</td>
</tr>
<tr>
<td>2</td>
<td>-0.2</td>
</tr>
<tr>
<td>3</td>
<td>-0.2</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>-0.1</td>
</tr>
<tr>
<td>2</td>
<td>-0.8</td>
</tr>
<tr>
<td>3</td>
<td>-0.2</td>
</tr>
<tr>
<td>Lyss, SDA 8B (2012)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>±0.0</td>
</tr>
<tr>
<td>1</td>
<td>+0.4</td>
</tr>
<tr>
<td>2</td>
<td>+0.1</td>
</tr>
<tr>
<td>3</td>
<td>+0.1</td>
</tr>
<tr>
<td>Muhen, ACMR 8 (2007)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>±0.0</td>
</tr>
<tr>
<td>1</td>
<td>-0.1</td>
</tr>
<tr>
<td>2</td>
<td>-0.1</td>
</tr>
<tr>
<td>3</td>
<td>+0.4</td>
</tr>
<tr>
<td>Teufenthal, ACMR 8 (2012)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>±0.0</td>
</tr>
<tr>
<td>1</td>
<td>-0.2</td>
</tr>
<tr>
<td>2</td>
<td>-0.2</td>
</tr>
<tr>
<td>3</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

Generell ist zu erkennen, dass die akustische Wirkung der Belagsreinigung relativ gering ausfällt mit maximaler Wirkung auf dem Nanosoft 4 Belag in Villars-Sur-Glâne von -0.8 dB für PW und -0.3 dB für LKW. Weiter ist zu erkennen, dass die Beläge ACMR 8 in Muhen und SDA 8B in Lyss eine Zunahme auf den Abschnitten 3, bzw. 1 aufweisen. In Abb. 14 sind die Spektren der Rollgeräuschmessungen vor und nach der Reinigung aller Teststrecken für PW (N1) und LKW (N2) dargestellt. Werden die Rollgeräuschkurven der Abschnitte im Zustand vor der Reinigung miteinander verglichen (jeweils links in Abb. 14), ist zu erkennen, dass bei allen Messstrecken eine leichte akustische Inhomogenität zwischen den verschiedenen Abschnitten vorliegt. Diese Inhomogenität ist hauptsächlich zwischen 500 und 2'500 Hz und ab 4'000 Hz zu erkennen.
Forschungspaket Lärmarme Beläge innerorts, EP 8: Akustische Wirkung betrieblicher Reinigungsmassnahmen bei lärmarmen Belägen

Bardonnex (4 mm)

Thônex (4 mm)

Villars-Sur-Glâne (4 mm)

Lyss (8 mm)
Forschungspaket Lärmarme Beläge innerorts, EP 8: Akustische Wirkung betrieblicher Reinigungsmassnahmen bei lärarmen Belägen

Abb. 14: Frequenzanalyse der CPX-Messungen für PW (N1) und LKW (N2) in dB(A) (Mittelwert pro Teststrecke). Links sind die Nullmessungen dargestellt, welche vorgängig zur Belagsreinigung durchgeführt wurden. Rechts sind die Messungen, welche zwei Tage bis eine Woche nach der Reinigung durchgeführt wurden.

Mit der Differenz der Messungen nach und vor der Reinigung per Abschnitt (siehe Abb. 15), kann die akustische Wirkung der Reinigung nachgewiesen werden. Abb. 15 zeigt in dB wie stark die Abnahme des Pegels aufgrund der Belagsreinigung ist.
Abb. 15: Differenz der CPX-Messung vor (Nullmessung) und nach der Reinigung der Beläge auf den Messstrecken der Belagsklassen 4 mm (oben) und 8 mm (unten) für PW (links) und LKW (rechts).

5.3 Schallabsorptionsgrad

Vor sowie nach der Reinigung wurden Schallabsorptionsmessungen mit der PU-Sonde durchgeführt. Wie bei den CPX-Messungen (siehe Kapitel 5.2) wurden die vor und nach der Reinigung durchgeführten Schallabsorptionsmessungen Abschnittweise miteinander verglichen, so dass keine Artefakte aufgrund von Inhomogenität in den Strecken auftreten können; indem auf dem ungereinigten Abschnitt 0 zum Zeitpunkt nach der Reinigung mit den Messungen zum Zeitpunkt vor der Reinigung abgeglichen. Dieser resultierende Abgleichungsfaktor wurde auf die Abschnitte 1 bis 3 angewendet.

Abb. 16 zeigt die Wirkung der Reinigung auf die Schallabsorptionseigenschaften auf allen vier Abschnitten. Eine maximale Wirkung bezüglich Schallabsorption von +0.16 dB auf der Frequenz von 1'000 Hz wurde auf dem Belag in Thônex festgestellt. Diese Wirkung wurde mit dem Rotoplast Reinigungsverfahren erreicht. Ebenfalls eine eher gute Wirkung bezüglich Schallabsorption wurde mit demselben Reinigungsverfahren auf dem Belag in Villars-Sur-Glâne mit +0.08 dB auf der Frequenz von 2'000 Hz erzielt. Auf den Belägen in Lyss und Teufenthal, welche zur Belagsklasse 8 mm gehören, ist nach der Reinigung eher eine Verschlechterung der schallabsorbierenden Eigenschaften erkennbar.

5.4 Oberflächentexturtiefe

Die Oberflächenrauigkeit ist ein Parameter, welcher den Reinigungseffekt abbilden kann. Nimmt die Oberflächenrauigkeit zu, kann die Luft in der Kontaktzone zwischen Reifen und Fahrbahn besser entweichen/angesogen werden, was zu einer Abnahme der Luftströmungsgeräusche führt. Deshalb wurden auf dem ungereinigten und den drei gereinigten Belagsabschnitten mit dem einfachen Verfahren, der Sandfleckmethode (siehe 4.2.5), die Oberflächentexturtiefe bestimmt.

Abb. 17 zeigt die mittlere Oberflächentexturtiefe für alle Messstrecken auf allen vier gemessenen Belagsabschnitten.
Insgesamt ist zu erkennen, dass die Oberflächentexturtiefe bei der 8 mm Belagsklasse im Mittel größer ist im Vergleich zur 4 mm Belagsklasse. Innerhalb der Belagsklassen weisen die Beläge in Thônex (6 Jahre nach Einbau) und in Muhlen (8 Jahre nach Einbau) die größte Oberflächentexturtiefe auf.

Bei der Belagsklasse 4 mm wurde bei allen Messstrecken eine geringfügige Zunahme der Oberflächentexturtiefe auf den gereinigten Abschnitten festgestellt im Vergleich zu zum jeweiligen ungereinigten Abschnitt. Bei der Belagsklasse 8 mm ist kein eindeutiger Trend festzustellen.

5.5 Luftströmungswiderstand

Ein wichtiger Parameter, welcher den Reinigungseffekt abbilden kann, ist die Porenzugänglichkeit des Strassenbelages. Diese wurde anhand des normierten Luftströmungswiderstandverfahrens evaluiert. Die Ergebnisse dieser Messungen sind in Abb. 18 dargestellt. Bei der Belagsklasse 4 mm spricht man von semi-dichten oder porösen Belägen, falls der Luftströmungswiderstand bei 0.0125 m/s kleiner als 15'000 Pa s m$^{-1}$ beträgt. Bei der Belagsklasse 8 mm muss der Wert kleiner 10'000 Pa s m$^{-1}$ betragen damit man von einem porösen oder semi-dichten Belag ausgehen kann.
Abb. 18: Luftströmungswiderstand bei 0.0125 m/s gemessen anhand des Lufttopf-Verfahrens (nach DIN EN 29053) aller Messstrecken auf den vier Belagsabschnitten (Abschn. 0: ungeräumt, Abschn. 1: gereinigt mit Kehren, Abschn. 2: gereinigt mit Sprühbalken, Abschn. 3: gereinigt mit Rotoplast). Die Messstrecken sind unterteilt nach 4 mm Belagsklasse (oben) und 8 mm Belagsklasse (unten).

6 Diskussion

6.1 Wirkung auf Lärmminderung

Im Hauptfokus des vorliegenden Projektes steht die Wirkung der Belagsreinigung auf die lärmreduzierenden Eigenschaften des Straßenbelages. Diese ist in Tab. 5 in Bezug auf den Gesamtpegel, sowie für einzelne Indikatorterzbänder dargestellt. Analog der in [20] vorgestellten Methodik werden die Rollgeräuschpegel einzelner Terzbänder dafür verwendet um Schlüsse auf die Veränderung der Lärmemission zu schliessen: Das Terzband bei 400 Hz der gemessenen Reifen-/Fahrbahngeräuschen wurde benutzt um die akustische Wirkung von der Belagsoberfläche anhand von Vibrationsschall zu charakterisieren. Da das Terzband bei 1'000 Hz des gemessenen Spektrums der Reifen-/Fahrbahngeräusche virtuell unabhängig von der Oberflächentextur ist und eine Frequenz repräsentiert, welche eine effektive Lärmminderung durch Schallabsorption bewirkt, wurde die Frequenz als Indikator für die akustische Wirkung der Schallabsorption benutzt. Das Terzband der 2'000 Hz Frequenz wurde benutzt um die akustische Wirkung betreffend Luftströmungsgeräusche zu charakterisieren.

Tab. 5: Einfluss Reinigung auf lärmreduzierende Wirkung für PW und LKW anhand einzelner Indikatorterzbänder 400, 1'000 und 2'000 Hz.

<table>
<thead>
<tr>
<th>Ort</th>
<th>Abschnitt</th>
<th>PW (N1)</th>
<th>LKW (N2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400 Hz</td>
<td>1'000 Hz</td>
<td>2'000 Hz</td>
</tr>
<tr>
<td>Bardonex, Nanosoft 4 (2010)</td>
<td>0</td>
<td>±0.0</td>
<td>±0.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-0.9</td>
<td>±0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.8</td>
<td>+0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>Thônex, Sapaphone 4 (2009)</td>
<td>0</td>
<td>±0.0</td>
<td>±0.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>±0.0</td>
<td>±0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.3</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>Villars-Sur-Glâne, Nanosoft 4 (2011)</td>
<td>0</td>
<td>±0.0</td>
<td>±0.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-0.2</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.6</td>
<td>-0.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.2</td>
<td>-0.1</td>
</tr>
<tr>
<td>Lyss, SDA BB (2012)</td>
<td>0</td>
<td>±0.0</td>
<td>±0.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>+0.3</td>
<td>+0.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>+0.2</td>
<td>±0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>+0.1</td>
<td>+0.1</td>
</tr>
<tr>
<td>Muhlen, ACMR 8 (2007)</td>
<td>0</td>
<td>±0.0</td>
<td>±0.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-0.1</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.6</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.1</td>
<td>+0.6</td>
</tr>
<tr>
<td>Teufenthal, ACMR 8 (2012)</td>
<td>0</td>
<td>±0.0</td>
<td>±0.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-0.1</td>
<td>-0.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

Interpretation:
- Marginal bis geringfügige Verbesserung der lärmreduzierenden Wirkung durch alle Reinigungsverfahren auf den Gesamtpegel (n=13), aber in Einzelfällen auch geringfügige Verschlechterung (n=5), siehe Tab. 4.
- Der insgesamt grösste Reinigungseffekt wurde auf dem 4 mm Belag in Villars-Sur-Glâne mit knapp 1 dB mit dem Sprühbalken erzielt.
- Die Auswertung der Indikatorfrequenzen zeigt, dass das Reinigungsverfahren Kehren bezüglich Schallabsorptions- und Luftströmungseigenschaften eine geringfügige bis keine Wirkung zeigt. Auf 4 mm Belägen scheint es sich jedoch tendenziell positiv auf die Oberflächentextureigenschaften auszuwirken (siehe negative Werte in Tab. 5).
- Mit dem Reinigungsverfahren Sprühbalken wird in den meisten Fällen eine Verbesserung bezüglich Schallabsorptions- und Luftströmungseigenschaften erreicht.
Diese Tendenz geht nicht in allen Fällen mit einer Verbesserung der akustischen Wirkung in Bezug auf die Gesamtpegel einher.

- Das Reinigungsverfahren Rotoplast wirkt sich ebenfalls positiv auf die bezüglich Schallabsorptions- und Luftströmungseigenschaften aus. Allerdings wird die Verbesserung vermehrt auf 4 mm Belägen festgestellt.

- Die geringfügige Verschlechterung der lärmreduzierenden Wirkung auf dem Belag in Lyss mit dem Reinigungsverfahren Kehren geht mit einer Zunahme der Indikatorfrequenz für Vibrationsgeräusche einher. Es ist möglich, dass das Reinigungsverfahren eine geringfügige Verschlechterung der Oberflächentextur durch Kornausbrüche herbeigeführt hat.

6.2 Wirkung bezüglich Schallabsorption

Alle drei Reinigungsverfahren vermögen die Schallabsorptionseigenschaften der Beläge nicht bis geringfügig zu verbessern. Die wesentlichste Verbesserung wurde mit dem Reinigungsverfahren Rotoplast auf den 4 mm Belägen erreicht. Dieses Phänomen ist konsistent mit der Beobachtung in Abschnitt 6.1 bei welcher hauptsächlich bei 4 mm Belägen eine Verbesserung der Indikatorfrequenz für Schallabsorptionseigenschaften festgestellt wurde.

6.3 Wirkung bezüglich Oberflächentextur

In der Theorie sollte der ungereinigte Abschnitt (Abschn. 0) aufgrund der mit Schmutz gefüllten Oberfläche, die kleinste Oberflächentexturtiefe aufweisen im Vergleich zu den drei gereinigten Belagsabschnitten (Abschn. 1 bis 3). Sämtliche Reinigungsverfahren führten auf 4 mm Belägen zu einer Zunahme der Oberflächenrauigkeit. Entsprechend scheinen die Reinigungsverfahren oberflächliche Schmutzablagerungen zu entfernen. Auf den 8 mm Belägen ist bezüglich Oberflächenrauigkeit keine eindeutige Tendenz festzustellen. Die Messstrecke Lyss weist als einzige in dieser Klasse eine leichte Zunahme in der Oberflächentexturtiefe auf. Dieses Resultat ist konsistent mit den Rollgeräuschmodenmessungen bei der Indikatorfrequenz für Vibrationsgeräusche, welche ebenfalls lediglich beim 8 mm Belag in Lyss eine Zunahme zeigte. Bei den anderen beiden Messstrecken dieser Belagsklasse, Muhlen und Teufenthal, ist eine leichte bis starke Abnahme der mittleren Oberflächentexturtiefe zu verzeichnen.

Generell sind aufgrund der verschiedenen Reinigungsverfahren keine markanten Unterschiede in der Oberflächentexturtiefe ersichtlich. Dies ist womöglich auf die mässige Genauigkeit des Messverfahrens zurückzuführen.

6.4 Wirkung bezüglich Porenzugänglichkeit

Es ist anzunehmen, dass die Porenzugänglichkeit mit der Effektivität der Reinigungsverfahren zunimmt, d.h. im Vergleich zum ungereinigten Abschnitt 0 eine tendenzielle Abnahme des Luftströmungswiderstands zu erwarten ist.

Im ungereinigten Zustand (Abschnitt 0) überschreiten bei der Belagsklasse 4 mm alle untersuchten Messstrecken den Richtwert für poröse Beläge, wobei bei der Belagsklasse 8 mm die Messstrecken in Lyss und Muhlen anhand der Grenzwerte als semi-dicht bis porös gelten (siehe Abb. 18).

Durch die Reinigung mit dem Sprühbalken auf dem 4 mm Belag in Villars-Sur-Glâne konnte der zuvor als dicht beurteilte Belag (siehe Abschn. 0 in Abb. 18) wieder als porös eingestuft werden. Dieses Resultat ist konsistent mit der Beobachtung in Abschnitt 6.1 bei welcher beim entsprechenden Belag eine Verbesserung der Indikatorfrequenz für...

Die Reinigung auf dem 8 mm Belag in Lyss führte ebenfalls zu einer Abnahme des Luftströmungswiderstandes v.a. bei den Reinigungsverfahren Kehren und Rotoplast. Da mit dem Reinigungsverfahren Kehren, bloss oberflächlicher Schmutz entfernt werden kann, deutet dies womöglich auf eine Wiederherstellung der Rugosität hin, nicht aber einer Wiederherstellung der Poren.
7 Schlussfolgerungen

7.1 Hauptergebnisse

- **Wirkung auf Lärmpegel:** Geringfügige bis keine Wirkung der Reinigungsverfahren auf die lärmreduzierenden Eigenschaften (maximale Wirkung 0.8 dB)

- **Reinigungsverfahren:** Auf 4 mm Belägen konnten sowohl mit den Reinigungsverfahren *Rotoplast* und *Sprühbalken* eine Wirkung erzielt werden. Auf 8 mm Belägen ist das *Sprühbalken* Verfahren am effektivsten. Für beide Belagsklassen führt das Reinigungsverfahren *Kehren* zu keiner Verbesserung der lärmreduzierenden Eigenschaften.

- **Wirkungsweise 4 mm:** Die Wirkung der Reinigung auf 4 mm Belägen zeigt sich auf konsistente Weise in erster Linie durch eine Verbesserung der Luftströmungseigenschaften und in geringerem Masse der Schallabsorptions-eigenschaften.

- **Wirkungsweise 8 mm:** Auf 8 mm Belägen ist die Wirkung tendenziell geringer. Aufgrund Inkonsistenz in den verschiedenen Messresultaten können keine gesicherten Schlussfolgerungen bezüglich der Wirkung der Reinigung auf die Schallentstehungsmechanismen und Schallabsorption gemacht werden.

7.2 Empfehlungen

- Aufgrund der geringfügigen Wirkung auf die lärmreduzierenden Eigenschaften sollte die Planung des Reinigungsunterhalts von lärmarmen Belägen auf sorgfältigen Kosten/Nutzen-Analysen basieren. Folgende Richtpreise können für eine Kosten/Nutzen-Analyse benutzt werden:
 - Reinigung im Umkreis von 50 km der Reinigungsfirma
 - Installation: 250 Fr. pauschal
 - Hecksauganlage/Rotoplast: 0.15 Fr./m²
 - Reinigung im Umkreis von 150 km der Reinigungsfirma
 - Installation: 450 Fr. pauschal
 - Hecksauganlage/Rotoplast: 0.15 Fr./m²
- Auf 4 mm Belägen wird empfohlen die Reinigungsverfahren *Sprühbalken* oder *Rotoplast* jeweils mit Absaugvorrichtung einzusetzen.
- Auf 8 mm Belägen wird empfohlen das Reinigungsverfahren *Sprühbalken* mit Absaugvorrichtung anzuwenden.
- Generell aber insbesondere bei älteren Belägen sollte sichergestellt werden, dass durch die Anwendung von Hochdruckreinigungsverfahren zu keiner Beschädigung der Belagsoberfläche kommt.

7.3 Ausblick

Anhänge

I Faktenblätter .. 45
I.1 Faktenblatt: Reinigungsverfahren... 45
I.2 Faktenblatt: Wirkung der Reinigungsverfahren auf lärarmen Belägen 46

II Belagsfotos .. 48
II.1 Belagsklasse 4 mm ... 49
II.2 Belagsklasse 8 mm ... 52

III Vorgängige belagsakustische Gütemessungen... 55
Faktenblätter

I.1 Faktenblatt: Reinigungsverfahren

Getestete Reinigungsverfahren

<table>
<thead>
<tr>
<th>Kehren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbau: Rotationsbesen mit Walze (mittig) und Aufsaugmechanismus</td>
</tr>
<tr>
<td>Funktionsweise: kehrt Schmutz mit Besen und Walze und nimmt ihn mit Walze und Saugvorrichtung auf.</td>
</tr>
<tr>
<td>Arbeitsgeschwindigkeit: 2 bis 5 km/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprühbalken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbau: Sprühbalken mit Wasserdüsen und Aufsaugsystem</td>
</tr>
<tr>
<td>Funktionsweise: Sprühbalken mit mehreren Wassersprühdüsen reinigen mit Druck von 80 bis 150 bar. Wassermenge bis zu 220 l/min. Anschliessend wird Schmutz mit Saugsystem aufgenommen.</td>
</tr>
<tr>
<td>Arbeitsgeschwindigkeit: 2 bis 5 km/h</td>
</tr>
<tr>
<td>Richtpreis: Installation: 250.- (Reinigung im Umkreis von 50 km)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotoplast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbau: Am Ende zweier rotierender Balken angeordnete Sprühdüsen mit Aufsaugsystem</td>
</tr>
<tr>
<td>Funktionsweise: Zweimal vier Balken orthogonaler Ausrichtung mit Wassersprühdüsen an jedem Ende reinigen mit einem Druck von bis zu 650 bar. Wassermenge bis zu 220 l/min. Anschliessend wird Schmutz mit einem Saugsystem aufgenommen.</td>
</tr>
<tr>
<td>Arbeitsgeschwindigkeit: -2 km/h</td>
</tr>
<tr>
<td>Richtpreis: Installation: 450.- (Reinigung im Umkreis von 150 km)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
I.2 Faktenblatt: Wirkung der Reinigungsverfahren auf lärmmarme Belägen

Wirkung Reinigungsverfahren

<table>
<thead>
<tr>
<th>Reinigungsverfahren</th>
<th>Abschn. 0</th>
<th>1. ungeriecht</th>
<th>Abschn. 2: Sprühbalken mit Hecksauganlage</th>
<th>Abschn. 3: Rotoplast mit Hecksauganlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschn. 1:kehren und saugen</td>
<td></td>
<td>2. riechen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abschn. 3: Rotoplast</td>
<td></td>
<td>3. reinigen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oberflächentextur

- 4 mm Beläge
- 8 mm Beläge

Porenzugänglichkeit

- 4 mm Beläge
- 8 mm Beläge

Wirkung auf Röllgeräuschpegel

- vor Reinigung
- nach Reinigung

Fazit / + Empfehlungen

> Wirkung auf Lärmpegel: Geringfügige bis keine Wirkung der Reinigungsverfahren auf die lärmmindernden Eigenschaften (maximale Wirkung 0,8 dB)
> Reinigungsverfahren: Auf 4 mm Belägen konnten sowohl mit den Reinigungsverfahren Rotoplast und Sprühbalken eine Wirkung erzielt werden. Auf 8 mm Belägen ist das Sprühbalken Verfahren am effektivsten. Für beide Belagklassen führt das Reinigungsverfahren Kehren zu keiner Verbesserung der lärmmindernden Eigenschaften.
> Wirkungsweise 4 mm: Die Wirkung der Reinigung auf 4 mm Belägen zeigt sich auf konsistente Weise in erster Linie durch eine Verbesserung der Luftströmungseigenschaften und in geringerem Masse der Schallabsorptionseigenschaften.
> Wirkungsweise 8 mm: Auf 8 mm Belägen ist die Wirkung tendenziell geringer. Aufgrund der Konsistenz in den verschiedenen Messresultaten können keine gesicherten Schlussfolgerungen bezüglich der Wirkung der Reinigung auf die Schallentstehungsmechanismen und Schallabsorption gemacht werden.
> Aufgrund der geringfügigen Wirkung auf die lärmmindernden Eigenschaften sollte die Planung des Reinigungsunterhalts von lärmmarmen Belägen auf sorgfältigen Kosten/Nutzen-Analysen basieren.
> Auf 4 mm Belägen wird empfohlen die Reinigungsverfahren Sprühbalken oder Rotoplast jeweils mit Absaugvorrichtung einzusetzen.
> Auf 8 mm Belägen wird empfohlen das Reinigungsverfahren Sprühbalken mit Absaugvorrichtung.
> Generell aber insbesondere bei älteren Belägen sollte sichergestellt werden, dass durch die Anwendung von Hochdruckreinigungsverfahren zu keiner Beschädigung der Belagsoberfläche kommt.
II Belagsfotos

In den nachfolgenden Tabellen 1 bis 3 werden die Belagsfotos, welche bei den Nullmessungen (vor der Reinigung) und bei den Erstmessungen (nach der Reinigung) aufgenommen wurden.
II.1 Belagsklasse 4 mm

<table>
<thead>
<tr>
<th>Abstrich 1</th>
<th>Abstrich 2</th>
<th>Abstrich 3</th>
<th>Abstrich 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>vor der Reinigung</td>
<td>nach der Reinigung</td>
<td>Fahspurmitte</td>
<td>Fahspurmitte</td>
</tr>
</tbody>
</table>
1560 | Forschungspaket Lärarme Beläge innerorts, EP 8: Akustische Wirkung betrieblicher Reinigungsmassnahmen bei lärmmarmen Belägen

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rechte Radspur</td>
<td>rechte Radspur</td>
</tr>
<tr>
<td>Fahrmittte</td>
<td>Fahrmittte</td>
</tr>
<tr>
<td>nach der Reinigung</td>
<td>nach der Reinigung</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>leider kein Bild vorhanden</td>
<td>leider kein Bild vorhanden</td>
<td>leider kein Bild vorhanden</td>
<td>leider kein Bild vorhanden</td>
</tr>
<tr>
<td>(Abschnitt 0)</td>
<td>(Abschnitt 1)</td>
<td>(Abschnitt 2)</td>
<td>(Abschnitt 3)</td>
</tr>
</tbody>
</table>

April 2016
Forschungspaket Lärmarme Beläge innerorts, EP 8: Akustische Wirkung betrieblicher Reinigungsmassnahmen bei lärarmen Belägen

<table>
<thead>
<tr>
<th>Vor der Reinigung</th>
<th>nach der Reinigung</th>
</tr>
</thead>
<tbody>
<tr>
<td>rechte Radspur</td>
<td>Fahrspurmitte</td>
</tr>
<tr>
<td>rechte Radspur</td>
<td>Fahrspurmitte</td>
</tr>
<tr>
<td>(abgeschmiert)</td>
<td>(abgeschmiert)</td>
</tr>
<tr>
<td>Abschnitt 0</td>
<td>Abschnitt 1</td>
</tr>
<tr>
<td>Abschnitt 2</td>
<td>Abschnitt 3</td>
</tr>
<tr>
<td>(präpolieren)</td>
<td>(präpolieren)</td>
</tr>
</tbody>
</table>

April 2016
II.2 Belagsklasse 8 mm
Tab. 5: Belagsstörserscheinungen von ACMR 8 (2007) in München vor der Reinigung, nach der Reinigung und Fahrspurmitte der rechten Radspur

<table>
<thead>
<tr>
<th>Abstand (m)</th>
<th>Abstand (m)</th>
<th>Abstand (m)</th>
<th>Abstand (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
1560 | Forschungspaket Lärarme Beläge innerorts, EP 8: Akustische Wirkung betrieblicher Reinigungsmassnahmen bei lärarmen Belägen

Tab. 6: Belägsfotos von ACMR 8 (2012) in Teufenthal

<table>
<thead>
<tr>
<th>Aktualitiät</th>
<th>Aktualitiät</th>
<th>Aktualitiät</th>
<th>Aktualitiät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der Reinigung</td>
<td>nach der Reinigung</td>
<td>Fahrradspur</td>
<td>Fahrradspur</td>
</tr>
<tr>
<td>rechte Radspur</td>
<td>rechte Radspur</td>
<td>Fahrradspur</td>
<td>Fahrradspur</td>
</tr>
</tbody>
</table>

April 2016
III Vorgängige belagsakustische Gütemessungen

Abb. 1: Streckenverlauf der CPX-Messungen für PW (N1; blau) und LKW (N2; grün). Die Teststrecke (rot) zeigt die Daten, welche unbeeinflusst von Schachtdeckeln, Fußgängerstreifen, sonstige Markierungen oder Kreisel sind und in die Auswertung mit eingeflossen sind.
Glossar

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACMR</td>
<td>Rauasphalt (engl. asphalt concrete macro rough)</td>
</tr>
<tr>
<td>CPX</td>
<td>Close Proximity Methode zur Messung des Reifen-Fahrbahn Geräusches</td>
</tr>
<tr>
<td>PU</td>
<td>Schalldruck und Schallschnelle</td>
</tr>
<tr>
<td>SDA</td>
<td>Semidichter Apshalt (lärmarme Beläge)</td>
</tr>
<tr>
<td>Stl-86+</td>
<td>Rechenmodell für Strassenverkehrs lärm</td>
</tr>
</tbody>
</table>
Literaturverzeichnis

Normen

Dokumentation

[12] S. Samuels, Advice to road authorities provided by Dr S.E. Samuels. 2002.

Projektabschluss

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederaziun svizera

Eidgenössisches Departement für
Umwelt, Verkehr, Energie und Kommunikation UVEK
Bundesamt für Strassen ASTRA

FORSCHUNG IM STRASSENWESEN DES UVEK

Formular Nr. 3: Projektabschluss

erstellt / geändert am: 12.10.2015

Grunddaten

Projekt-Nr.: 2013/003
Projekttitel: Forschungsprojekt EP8: Akustische Wirkung betrieblicher Reinigungsmassnahmen bei
lärmmarem Belägen
Enddatum: 31.10.2015

Texte

Zusammenfassung der Projektresultate:

+ Wirkung auf Lärmpiegel: Es wurde eine geringfügige bis keine Wirkung der
Reinigungsverfahren auf die lärmmindernde Eigenschaften (maximale Wirkung 0.8 dB)
festgestellt.
+ Reinigungsverfahren: Auf 4 mm Belägen konnten sowohl mit den Reinigungsverfahren
Rotoplast als auch Sprühbalken eine Wirkung erzielt werden. Auf 8 mm Belägen ist das
Sprühbalken Verfahren am effektivsten. Für beide Belagsklassen führt das
Reinigungsverfahren Kehren zu keiner Verbesserung der lärmmindernden
Eigenschaften.
+ Wirkungsweise 4 mm: Die Wirkung der Reinigung auf 4 mm Belägen zeigt sich auf
konsistente Weise in erster Linie durch eine Verbesserung der Luftströmungseigenschaften
und in geringerem Masse der Schallabsorptionseigenschaften.
+ Wirkungsweise 8 mm: Auf 8 mm Belägen ist die Wirkung tendenziell geringer. Aufgrund
Inkonsistenz in den verschiedenen Messresultaten können keine gesicherten Schlussfolgerungen bezüglich der Wirkung der Reinigung auf die Schallentstehungsmechanismen und Schallabsorption gemacht werden.
Zielsetzung:

Die im Forschungsprojekt angestrebten Zielvorgaben konnten vollumfänglich umgesetzt werden:
+ Die erreichbare Pegelreduktion wurde unmittelbar nach dem Einsatz der Unterhaltsmaßnahmen ermittelt und die akustische Dauerhaftigkeit der Maßnahmen wurde bestimmt.
+ Es erfolgte eine Kategorisierung und Bewertung in Abhängigkeit der realisierten Wirkungszunahme der verschiedenen Unterhaltsmaßnahmen.
+ Belagtypspezifische Empfehlungen für den betrieblichen Unterhalt von leisen Straßenbelägen wurden erarbeitet, mit dem Ziel, die akustische Wirkung dieser Beläge dauerhaft zu verbessern.

Allerdings wurde aufgrund der analysierten Daten ersichtlich, dass die erreichbare Pegelreduktion durch effiziente Reinigungsmaßnahmen auf lärmmarme Beläge gering ausfällt. Aus diesem Grund wurden die ursprünglich geplanten Folgemessungen, welche die akustische Dauerhaftigkeit der Reinigungsmaßnahmen hätten evaluieren sollen, nicht durchgeführt.

Folgerungen und Empfehlungen:

+ Aufgrund der geringfügigen Wirkung auf die lärmmindernden Eigenschaften sollte die Planung des Reinigungsunterhalts von lärmmaren Belägen auf sorgfältigen Kosten/Nutzen-Analysen basieren.
+ Auf 4 mm Belägen wird empfohlen die Reinigungsverfahren Sprühbalken oder Rotoplast jeweils mit Absaugvorrichtung einzusetzen.
+ Auf 8 mm Belägen wird empfohlen das Reinigungsverfahren Sprühbalken mit Abgaskühler einzusetzen.
+ Generell aber insbesondere bei älteren Belägen sollte sichergestellt werden, dass durch die Anwendung von Hochdruckreinigungsverfahren zu keiner Beschädigung der Belagsoberfläche kommt.

Publikationen:

Neben der Publikation des Forschungsberichts in der Mobilitätswissenschaft wird ein Beitrag für eine internationale Konferenz sowie ein Artikel in der Zeitschrift "Strasse und Verkehr" angestrebt.

Der Projektleiter/die Projektleiterin:

Name: Ziegler Vorname: Toni

Amt, Firma, Institut: VR-Präsident, Gromund + Partner AG

Unterschrift des Projektleiters/des Projektleiters:

Forschung im Strassenwesen des UVEK: Formular 3 Seite 2 / 3
Hauptziel der Forschungsarbeit war eine quantitative Bestimmung der Verbesserung der akustischen Wirkung lärmarmer Straßentäfel im Innerortsbereich, welche durch Reinigungsmaßnahmen erreicht werden können. Grundsätzlich konnte mit keiner der Reinigungsart (Kehren, Rotoplast und Sprühbalken) die akustische Wirkung der geprüften Täfelung spürbar verbessert werden (maximal gemessene Verbesserung 0.8 dB(A)). Täfelung mit einer Korngröße von maximal 4 mm wiesen eine etwas stärker spürbare Verbesserung der akustischen Wirkung auf als solche mit einer 8er-Kornung. Die maximal gemessenen Verbesserungen konnten nach dem Einsatz des Rotoplast (bei 4er-Kornung) und mit dem Sprühbalken (bei 4er und 8er-Kornung) erreicht werden. Das Kehren brachte keine Verbesserung der akustischen Eigenschaften.
Obwohl ein geringfügiger Reinigungseffekt bezüglich der lärmsenkenden Eigenschaften erzielt werden konnte, war es nicht möglich die genaue Lage des Schmutzeintrages in das Porengefüge des Straßenbelages zu eruieren.

Umsetzung:
Mit dem aktuellen Stand der Reinigungstechniken ist es nicht möglich eine Verbesserung oder Wiederherstellung der akustischen Eigenschaften eines Belages zu erreichen.

weitergehender Forschungsbedarf:
Als Fokus zukünftiger Forschungsanstrengungen sollte die genaue Lage und Eigenschaften des eingetragenen Schmutzes analysiert werden.

Einfluss auf Normenwerk:
keiner

Der Präsident/die Präsidentin der Begleitkommission:
Name: Seiler
Vorname: Luzia
Amt, Firma, Institut: ASTRA

Unterschrift des Präsidenten/der Präsidentin der Begleitkommission:

Forschung im Strassenwesen des UVEK: Formular 3
Verzeichnis der Berichte der Forschung im Strassenwesen