CITA-Applus+ Urea Emulator
Emission Tampering

September 9th, 2021

Víctor Salvachúa, Topic Area Chairperson, R + D Vehicle Compliance
INDEX SLIDE

► SCR SYSTEMS
► AD BLUE EMULATORS
► TESTS
► RESULTS
► CONCLUSIONS
► Q&A / OPEN DEBATE
Gasoline: 3WCC

- **SEMI-PASSIVE SYSTEM**
 - CORRECT TEMPERATURE
 - NEAR TO STOICHIOMETRIC MIXTURE
 - CATALYTIC REACTION (NO CONSUMABLE)
 - INOPERATIVE DEVICES ARE EASY TO DETECT

\[
\begin{align*}
2\text{NO} & \rightarrow \text{N}_2 + \text{O}_2 \\
2\text{NO}_2 & \rightarrow \text{N}_2 + 2\text{O}_2 \\
2\text{CO} + \text{O}_2 & \rightarrow 2\text{CO}_2 \\
\text{HC} + \text{O}_2 & \rightarrow \text{CO}_2 + \text{H}_2\text{O}
\end{align*}
\]
SCR BASICS

SCR

- **DOC** increases NO₂ to NO ratio increasing SCR effectivity
- **DPF** blocks PM and oxidizes it during regeneration
- **Noₓ Reduction**
 - \(4 \text{NH}_3 + 4 \text{NO} + \text{O}_2 \rightarrow 4 \text{N}_2 + 6 \text{H}_2\text{O}\)
 - \(4 \text{NH}_3 + 2 \text{NO} + 2 \text{NO}_2 \rightarrow 4 \text{N}_2 + 6 \text{H}_2\text{O}\)
- **AOC** oxidises excess ammonia

Image: https://dieselnet.com/
SCR BASICS

SCR

- UREA NEEDED AS AN ADDITIVE
- ADBLUE / DEF (DIESEL EXHAUST FLUID)
- EGR / SCR BALANCE NEEDED
- COMPLEX SYSTEM THAT INCREASES VEHICLE INITIAL AND OPERATION COST
- NOX REDUCTION STRATEGIES HAVE BECOME AN IMPORTANT INDUSTRIAL SECRET
- DUE TO THE COMPLEXITY OF THE INJECTION STRATEGY IS NOT EASY TO DO A QUICK SYSTEM FUNCTION TEST

Image: https://https://www.camionactualidad.es/
SCR vs 3WCC

<table>
<thead>
<tr>
<th></th>
<th>3WCC</th>
<th>SCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Cost</td>
<td>Medium</td>
<td>Very High</td>
</tr>
<tr>
<td>Operation cost</td>
<td>None</td>
<td>UREA</td>
</tr>
<tr>
<td>Repair cost</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Enforcement</td>
<td>Easy</td>
<td>Very complex</td>
</tr>
</tbody>
</table>
AD BLUE EMULATORS

https://www.canbusemulator.com/en/
TEST LAB

- VEHICLE TESTED BY APPLUS IDIADA IN SPAIN
- CREDENTIALS
 - ISO 17025 ACCREDITED LABORATORY
 - DESIGNATED TECHNICAL SERVICE SPAIN
 - >15 YEARS ON-BOARD FUEL/ENERGY CONSUMPTION AND EMISSIONS

Timeline:
- 1st PEMS acquisition for R&D projects
- EU 582/2011 PEMS – HDV regulation in force
- RDE-LDV EU regulation
- PEMS testing deployment Brasil
- Fuel & energy consumption services in China
- E/M laboratory operation Itatiaia (Brasil)
- CETESB accreditation

Events:
- 2004
- 2011
- 2016
- 2018
- Q3 2019
- Q4 2019
- Q1 2020
- Q2 2020
- Q3 2020
- Q4 2020
- 2021
TEST LAB

- OFFERING F/E & EMISSIONS ABROAD FOR HDV
- REGULATED AND NON-REGULATED TESTS
 - SORT, R.49, EU582/2011, VTP
- BENCHMARKING PROGRAMS
- CUSTOMISED TESTS
- VEHICLE & SYSTEM LAYOUTS
- ENGINE DYNOMETER & VEHICLE TESTING
Test Vehicle

<table>
<thead>
<tr>
<th>Truck</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>VIN</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Engine</td>
<td>Fuel</td>
</tr>
<tr>
<td>Test weight (kg)</td>
<td>38818Kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trailer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>VSRSP3M06ML068738</td>
</tr>
<tr>
<td>Tyres - Pressure (bar)</td>
<td>1st and 2nd axle: Bridgestone R164 160K 158L 285/65 R22.5 – 8.0 3rd axle: Dunlop SP 244 160K 158L 285/65 R22.5 – 8.0</td>
</tr>
</tbody>
</table>
UT: UREA TANK
USM: UREA SUPPLY MODULE
ECM: ENGINE CONTROL MODULE

1: LEVEL AND TEMPERATURE UREA TANK
2: HUMIDITY SENSOR
3: NH₃ SENSOR
4: AFTER CATALYST NOₓ SENSOR
5: AFTER CATALYST TEMPERATURE SENSOR
6: BEFORE SCR TEMPERATURE SENSOR
7: UREA INJECTOR
8: DPF DELTA-P SENSOR
9: BEFORE CATALYST TEMPERATURE SENSOR
10: BEFORE CATALYST NOₓ SENSOR
11: UREA TEMPERATURE SENSOR
12: UREA PRESSURE SENSOR
13: UREA PUMP CONTROL SIGNAL
TEST INSTRUMENTATION

1: UREA MASS FLOW (g/s)
2: UREA PRESSURE SENSOR (kPA)
3: CAN_H AND CAN_L
4: UREA INJECTOR CURRENT (A)
12: UREA PRESSURE SENSOR
13: UREA PUMP CONTROL SIGNAL
Urea emulator installation connection points:

1. Urea pressure sensor signal, ○
2. Urea pump control signal.
3. CAN_H and CAN_L and
 Vehicle 24V Fuse
 Vehicle GND
INCA - Urea pressure sensor signal, ○
INCA – Urea pump control signal. ●

3 CAN_H and CAN_L ○ and ●
Vehicle 24V Fuse ●
Vehicle GND ●
TEST ROUTE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test duration</td>
<td>s</td>
<td>9.700</td>
</tr>
<tr>
<td>Distance</td>
<td>km</td>
<td>194</td>
</tr>
<tr>
<td>Average speed</td>
<td>km/h</td>
<td>75.00</td>
</tr>
<tr>
<td>Maximum altitude</td>
<td>m</td>
<td>577.0</td>
</tr>
<tr>
<td>Medium altitude</td>
<td>m</td>
<td>344.0</td>
</tr>
<tr>
<td>Minimum altitude</td>
<td>m</td>
<td>129.0</td>
</tr>
</tbody>
</table>
RESULTS

OBD VALIDATION

► MIL ACTIVATED AND COUNTER INCREASES
► TORQUE REDUCTION AFTER 10 HOURS
► 2 DTC PRESENT
 • DTC2012 = P208B Reductant Pump “A” Control Performance/Stuck Off
 • DTC2012 = P208A Reductant Pump “A” Control Circuit/Open
► VEHICLE BEHAVES AS EXPECTED

<table>
<thead>
<tr>
<th>Step</th>
<th>Date</th>
<th>Time</th>
<th>Emulator installed? (Y/N)</th>
<th>Driven mileage (km)</th>
<th>Driven hours (h)</th>
<th>Comments</th>
<th>Reagent quality counter (h)</th>
<th>Reagent consumption counter (h)</th>
<th>Dosing counter (h)</th>
<th>EGR valve counter (h)</th>
<th>Monitoring system counter (h)</th>
<th>NOx Warning System</th>
<th>Level One Inducement</th>
<th>Ad Blue ON?</th>
<th>Torque reduction? (Y/N)</th>
<th>MIL ON?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08/04/2021</td>
<td>8:00</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Original Conditions</td>
<td>0h</td>
<td>0h</td>
<td>0h</td>
<td>0h</td>
<td>Inactive</td>
<td>Inactive</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>1</td>
<td>08/04/2021</td>
<td>13:52</td>
<td>No</td>
<td>239.12</td>
<td>3.52</td>
<td>USM Isolated</td>
<td>0h</td>
<td>0h</td>
<td>0h</td>
<td>0h</td>
<td>Active</td>
<td>Inactive</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>08/04/2021</td>
<td>18:19</td>
<td>No</td>
<td>271.58</td>
<td>4.56</td>
<td>USM Isolated</td>
<td>0h</td>
<td>0h</td>
<td>3-7h</td>
<td>0h</td>
<td>Active</td>
<td>Inactive</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>3</td>
<td>09/04/2021</td>
<td>13:03</td>
<td>No</td>
<td>134.64</td>
<td>2.28</td>
<td>USM Isolated - Torque reduction 10h</td>
<td>0h</td>
<td>0h</td>
<td>7-10h</td>
<td>0h</td>
<td>Active</td>
<td>Active</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>09/04/2021</td>
<td>17:26</td>
<td>No</td>
<td>101.2</td>
<td>1.71</td>
<td>USM Isolated - Torque reduction</td>
<td>0h</td>
<td>0h</td>
<td>10-12h</td>
<td>0h</td>
<td>Active</td>
<td>Active</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
RESULTS AD BLUE EMULATOR

► NO MIL ACTIVATED NOR COUNTERS STARTED
► NO TORQUE REDUCTION
► COMPLETE UREA SYSTEM OVERRIDE
► NO UREA INJECTED

<table>
<thead>
<tr>
<th>Route</th>
<th>Date</th>
<th>Time</th>
<th>Emulator installed? (Y/N)</th>
<th>Driven mileage (km)</th>
<th>Driven hours (h)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route 5</td>
<td>13/04/2021</td>
<td>16:49</td>
<td>Yes</td>
<td>239.6</td>
<td>3.65</td>
<td>No MILs present and no counters increased.</td>
</tr>
<tr>
<td>Route 6</td>
<td>14/04/2021</td>
<td>16:26</td>
<td>Yes</td>
<td>237.75</td>
<td>3.46</td>
<td>No MILs present and no counters increased.</td>
</tr>
</tbody>
</table>
RESULTS PARALEL MODE

- The emulator uses CAN messages to detect vehicle ignition
- Control and actuator signals are replaced by constant voltages
- The ECM is feed with fake max injection pressure
- The pump is required not to inject
RESULTS

DEVICE EVALUATION

- The system **completely avoids** the urea injection.
- The system **avoids** any DTC, MIL or induction mode activation.
- NO\textsubscript{x} emissions **increased** around 400% in the test.
- AD blue **savings** added to around 5€/200 KM.
- Savings **around** 20€ per day.
- Device **payback** is around 6 **days** for an international truck.

- **Think of the incentives**
RESULTS

DEVICE EVALUATION

► INCENTIVES

► DURING VEHICLE LIFETIME SAVING SEVERAL TENTHS OF THOUSAND EUROS

► SINGLE TRUCK OWNER IMPORTANT INCREASE ON PROFITS

► FOR A FLEET IT MAY REPRESENT A COMPETITIVE ISSUE

► DETECTION BY PTI OR POLICE BODIES ALMOST IMPOSSIBLE BY DESIGN AND LACK OF REFERENCES
CONCLUSIONS

► TAMPERING IS MORE THAN A TECHNICAL ISSUE, IT IS BEHAVIORAL

► EXPERIENCE SHOWS THAT TECHNOLOGY PROGRESS WILL CHALLENGE ANY TAMPERING PROTECTION BY DESIGN IN FEW MONTHS

► TO PREVENT TAMPERING, WE NEED BOTH DESIGNS MORE TAMPERING PROOF AND TO FACILITATE DETECTION

► THE DIAS PROJECT IS AN EXCELLENT INITIATIVE FOR MORE ROBUST DESIGNS. IT NEEDS TO BE COMPLETED TO FACILITATE TAMPERING DETECTION HTTPS://DIAS-PROJECT.COM/

► ADAS, AD AND EV MAY ALSO FACE SIMILAR INCENTIVE PROBLEMS

► THE WHOLE LIFE OF THE VEHICLE, THE INCENTIVES GENERATED AND THE ENFORCEMENT NEED TO BE CONSIDERED WHEN PLANNING FUTURE AUTOMOTIVE REGULATIONS
Thank you for your attention!

www.citainsp.org
Rue du Commerce 123 - 1000 Brussels, Belgium
+32 (0)2 469 06 70
secretariat@citainsp.org