

EU-Commission JRC Contribution to EVE IWG: HDV in-vehicle battery durability

Web-Meeting

Elena Paffumi 16th February, 2022

In-vehicle battery durability: LDVs vs HDVs

LDVs:

- TA of entire vehicle with specific driving cycle and test procedure
- Possibility to repeat the TA test assessing the whole vehicle, i.e., battery and power train
- Different usage profiles in different geographic areas for the MPR definition

HDVs:

- > TA of components
- Simulation tool determines fuel consumption and CO2 emissions of HDVs based on vehicle component (engine, air drag, gearbox, axles, tyres,...) input data
- Heavy-duty vehicles have a large number of different types of vehicles for a single powertrain.
- Different usage profiles, load and scope
- Assessment of the aged components

Full procedure

As Japanese proposal, same methodology as for LDV:

- 1. Different procedure for assessing the SOH indicators
- 2. Families definition is needed to be defined
- 3. Work is needed to define the acceptable MPR for HDV

HDV Battery Capacity Retention Assessment

- Different proposals:
 - Removing the aged battery from the vehicle for component testing
 - > Too expensive and ignores full vehicle losses
 - Aged battery testing inside the vehicle applying a RTE*-like test at given mileage or years

*RTE: Round Trip Efficiency

HDV Battery Capacity Retention Test

Possible RTE test:

Depleting completely the battery and fully charged it back while measuring the energy in and out at the battery to avoid combined battery-inverter efficiency and energy losses

- > Fully deplete the battery according to a procedure to be defined:
 - Depleting by driving at defined C-rate/depleting current or by new available charging stations;
 assessment of the two methods accuracy needed (new systems and V2X standards under development to cover different charging mode and plugs)
- > Fully recharge the battery according to a procedure to be defined:
 - Charging at full with a defined C-rate/charging current
- > These two steps are performed on a new vehicle per family (at type approval) to get reference values
- > The same procedure is performed on vehicles from the field to assess the SOCE indicator
- > Test boundary conditions to be defined (see next slide)

HDV Battery Capacity Retention Test

Test boundary conditions to be defined:

- Power of charging/discharging, AC vs DC, temperature, SOC level and SOC swing...
- Test repetitions, accuracy, distribution
- OVC-HEV vs PEV
- Families definition
- Battery energy, capacity ...
- O ...

Thank you for the attention Q&A

Contacts Info: EC DG JRC DIR-C Energy, Transport and Climate, Sustainable Transport Unit elena.paffumi@ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

