

Automotive Cybersecurity Regulations

Dr. Kai Frederik ZASTROW
Senior Fellow Regulation Certification Standards, Stellantis
Chairman of OICA Cluster 4 Cybersecurity and Software Updates

Why cybersecurity regulation?

Risk of cyberattacks

Safety/Security impact:

- Hacker may get access to private data or may manipulate existing vehicle software
- Hacker may use vehicle as weapon for **criminal actions** / terrorist attacks

Economic impact:

- Worldwide cybersecurity market: 3,1 billion € (2004), 67 billion € (2015) and 152 billion € (2020 forecast Gartner).
- Automotive cybersecurity market: about 683 M € in 2023 (IHS Markit)
- Economic risk for vehicle manufacturer, e.g. for recalls
- Objective of the regulation
 - Protect the vehicle from cyber-attacks

- Update software on vehicles during the whole vehicle life in order to:
 - Ensure safety/security of the vehicle (bug fixes, cybersecurity updates, etc.)
 - Maintain functionality and compliance with legal acts (traffic rules, etc.)
 - Add new functions (e.g. infotainment) without impact on type approved characteristics.
 - Add new functions (e.g. ADAS functionalities) with impact on type approved characteristics that are covered by new/extended type approvals.
- Objective of the regulation
 - Ensure that the SW on a vehicle is and stays compliant with vehicle homologation

Global Automotive Standards and Regulations to address Cybersecurity and SW updates

UN Regulations (adopted in June 2020) are worldwide consensus:

Developed under GRVA (chaired by Germany, Japan and China) / TF Cybersecurity & OTA issues (chaired by UK, Japan and USA).

Cybersecurity concerns the whole vehicle

Example for risks of unsecured access:

⇒ Cybersecurity cannot be covered by certification of only some specific components

UN Regulation 155 on Automotive Cybersecurity

Split approach for the cybersecurity assessment:

- i) Assessment and certification of vehicle manufacturer Cyber Security Management System
- ii) Assessment and certification of vehicles

Organizational structure & processes

Design of the vehicle EE architecture, risk assessment and implementation of mitigations

Annex 5, Part A: List of threats

Table A1
List of vulnerability or attack method related to the threats

High level and sub-level descriptions of vulnerability/ threat			Example of vulnerability or attack method	
4.3.1 Threats regarding back-end servers related to vehicles in the field	1	Back-end servers used as a means to attack a vehicle or extract data	1.1	Abuse of privileges by staff (insider attack)
			1.2	Unauthorized internet access to the server (enabled for example by backdoors, unpatched system software vulnerabilities, SQL attacks or other means)
			1.3	Unauthorized physical access to the server (conducted by for example USB sticks or other media connecting to the server)
	2	Services from back-end server being disrupted, affecting the operation of a vehicle	2.1	Attack on back-end server stops it functioning, for example it prevents it from interacting with vehicles and providing services they rely on
	3	Vehicle related data held on back-end servers being lost or compromised ("data breach")	3.1	Abuse of privileges by staff (insider attack)
			3.2	Loss of information in the cloud. Sensitive data may be lost due to attacks or accidents when data is stored by third-party cloud service providers
			2.2	Thouthoused intounet cooses to the source

Annex 5, Part B: Mitigations on vehicles

Table B1

Mitigation to the threats which are related to "Vehicle communication channels"

Table A1 reference	Threats to "Vehicle communication channels"	Ref	Mitigation
4.1	Spoofing of messages (e.g. 802.11p V2X during platooning, GNSS messages, etc.) by impersonation	M10	The vehicle shall verify the authenticity and integrity of messages it receives
4.2	Sybil attack (in order to spoof other vehicles as if there are many vehicles on the road)	M11	Security controls shall be implemented for storing cryptographic keys (e.g., use of Hardware Security Modules)
5.1	Communication channels permit code injection into vehicle held data/code, for example tampered software binary might be injected into the communication stream	M10 M6	The vehicle shall verify the authenticity and integrity of messages it receives Systems shall implement security by design to minimize risks
5.2	Communication channels permit manipulation of vehicle held data/code		Access control techniques and designs shall be applied to protect system data/code

Annex 5, Part C: Mitigations outside the vehicle

Table C1
Mitigations to the threats which are related to "Back-end servers"

Table A1 reference	Threats to "Back-end servers"	Ref	Mitigation
1.1 & 3.1	Abuse of privileges by staff (insider attack)	M1	Security Controls are applied to back-end systems to minimise the risk of insider attack
1.2 & 3.3	Unauthorised internet access to the server (enabled for example by backdoors, unpatched system software vulnerabilities, SQL attacks or other means)	M2	Security Controls are applied to back-end systems to minimise unauthorised access. Example Security Controls can be found in OWASP
1.3 & 3.4	Unauthorised physical access to the server (conducted by for example USB sticks or other media connecting to the server)	M8	Through system design and access control it should not be possible for unauthorised personnel to access personal or system critical data
2.1	Attack on back-end server stops it functioning, for example it prevents it from interacting with vehicles and providing services they rely on	М3	Security Controls are applied to back-end systems. Where back-end servers are critical to the provision of services there are recovery measures in case of system outage. Example Security Controls can be found in OWASP
	- 0.0	3.57	

UN Regulation 156 on SW updates

Split approach:

- i) Assessment and certification of vehicle manufacturer Software Update Management System
- ii) Assessment and certification of vehicles
- iii) Implementation of software identification numbers for specific regulations

Organizational structure & processes, incl. management of SW identification

Requirements for safe execution of SW updates and user information

Implementation of SW identification numbers (RXSWIN) in specific regulations

R155 Cybersecurity & R156 SW update implementation

- Jan 2021: Entry into force: legal acts are available for application by UN Contracting Parties.
- UN Contracting Parties require them in their national vehicle type approval:
 - Japan
 - o R155 & R156
 - Immediately for automated vehicles SAE level 3 or higher
 - July 2022 for new whole vehicle types & July 2024 for new registrations if <u>SU</u> affecting type approval and <u>OTA capability</u>
 - Jan 2024 for new whole vehicle types & May 2026 for new registrations: R155 & 156 if <u>SU affecting type approval</u> and <u>no OTA capability</u>; R155 in all other cases
 - European Union
 - R155: 6 July 2022 for new whole vehicle types & 7 July 2024 for new registrations
 - R156: under preparation (via delegated act amending EU 2018/858)
 - Other countries may follow

"Recommendations on uniform provisions concerning cyber security and software updates"

- ➤ Document produced by UN Task Force is as much as possible aligned with R155 and R156 for countries that have no type approval regime.
 - Covers both: cyber security and software update processes
 - Covers the whole life cycle of a vehicle model (from design to post-production)
 - Lists technical requirements for the vehicle and for the management system
 - Considers the concept of SW identification numbers (RXSWIN)
- ➤ Recommendation <u>WP.29/GRVA/2022/5</u> adopted by GRVA in January 2022
- Need to follow next steps

Opportunities for global harmonization

- Make sure that the 54 signatory countries of the UN Geneva 1958 Agreement apply the UN Regulations (and do not invent national requirements)
- ➤ Make sure that countries that do not apply directly R155 and R156 apply at least the Recommendations on uniform provisions
- ➤ Harmonize the Chinese draft national standards under development by SAC/TC 114/SC 34/WG Cyber with ISO and UN.

THANK YOU FOR YOUR INTEREST!

Link to UN documents

- ➤ UN Regulation 155 Cybersecurity https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security
- Interpretation document on Cybersecurity http://unece.org/sites/default/files/2020-12/ECE-TRANS-WP29-2021-059e.pdf
- UN Regulation 156 SW update https://unece.org/transport/documents/2021/03/standards/un-regulation-no-156-software-update-and-software-update
- Interpretation document on SW update http://unece.org/sites/default/files/2020-12/ECE-TRANS-WP29-2021-060e.pdf
- ➤ Recommendations on uniform provisions concerning cyber security and software updates https://unece.org/sites/default/files/2021-12/ECE-TRANS-WP29-GRVA-2022-05e.pdf
- UN Regulation 157 ALKS (see chapter 9 with link to UN Regulations 155 and 156 and Annex point 19) https://unece.org/transport/documents/2021/03/standards/un-regulation-no-157-automated-lane-keeping-systems-alks
- Consolidated Resolution on the Construction of Vehicles (R.E.3), Annex 7: Provisions on Software Identification Numbers (integration of RXSWIN in system regulations)
 http://www.unece.org/fileadmin/DAM/trans/doc/2020/wp29/ECE-TRANS-WP29-2020-082e.pdf