TF-VS CROSSMATRIX
 STATUS REPORT

April 04, 2022

TF Vehicles' Sound - Cross matrix - Subgroup

Aim

- Identify where the problems/complaints due to the noise are coming from to be able to build a kind of simulation tool/traffic scenario to make some 'prediction' to continue to improve noise in real life
- Volunteers:
- CPs: China, France, Japan, NL
- NGO:OICA, ETRTO
- Guest: HS Consultant
Our guideline
- Keep in mind the intention of this work: improve noise level especially in urban area
- Proposals must not be limited to noise sources
- Situations with the biggest impact on noise to be considered
- Not to be limited to the TA process - other measures (as Police) possible
- Define (3-5) common scenarios to be able to compare them/harmonize
- Input \& output of the group needs to be better described

TF Vehicles' Sound - Cross matrix - Subgroup

	- TFVS-01-05 Rev. 1 (Germany) General ideas about the work of the TF
	- TFVS-02-07 (OICA) Diagram type of road vs. impact on noise per regulations
For reminder, documents	- TFVS-04-14 (Secretary) General Summary
already available	- TFVS-05-06 (Subgroup) Explanation of parameters
	- TFVS-06-05 (Japan) Comments on crossmatrix parameters
	- TFVS-07-05 (Subgroup) Table Traffic scenario classification
	- TFVS-07-08 (Subgroup) Explanations traffic scenario specifications

TF Vehicles' Sound - Cross matrix - Subgroup

WP. 1	- Identification \& explanation of parameters which could be taken into account
WP. 2	- Identification \& Definition of the scenarios
WP. 3	- From the defined scenarios, calculation from existing models for roadmapping
WP. 4	- Comparison and analysis of calculations
WP. 5	- Conclusions - Next steps

TF Vehicles' Sound - Cross matrix - Subgroup

WP. 1

- Street category
- Daily traffic volume (DTV)
- Lanes / Specific features
- Maximum vehicle speed LCV/HDV/MC
- Split HDV, split MC
- Vehicle category share
- Level of service (LoS)
- Level of Interrruption (Lol)
- Hour traffic volume distribution (HTV)
- Speed attenuation and increase
- Observer distance
- Identification \& explanation of parameters which could be taken into account
- Location / Road surface, level of maintenance, age, ...
- Traffic flow / scenario
- TFVS-05-06
- TFVS-07-08
- (Sound propagation)
- TFVS-05-03
- Road surface

TF Vehicles' Sound - Cross matrix - Subgroup

WP. 2
COMMON
SCENARIOS to 5 to be able
to compare the different models

- Identification \& Definition of the scenarios

Based on parameters to be chosen as:

- Different type of city areas (not motorways)
- Different speeds
- Road surface / test track
- ...

Questions to be solved:

- TFVS-02-07
- TFVS-06-05
- TFVS-07-05
- TFVS-07-13
- Single events (through L_{EQ}) or driver behaviors or manipulation to be considered?

TF Vehicles' Sound - Cross matrix - Subgroup

WP. 4

- Comparison and analysis of calculations

WP. 5

- Conclusions
- Next steps

Comments \& suggestions?

Parameter	Symbol	Value min		Value max	
Daily Traffic Volume	DTV	1000		100000	
Lanes	n_lanes	2		10	
Exposed People	n/km	40		500	
Observer Position	MIC_pos	7,5 m		50 m	
		LDV		HDV	
		Value min	Value max	Value min	Value max
Reference Speed	v	$30 \mathrm{~km} / \mathrm{h}$	$125 \mathrm{~km} / \mathrm{h}$	$20 \mathrm{~km} / \mathrm{h}$	$85 \mathrm{~km} / \mathrm{h}$
Fluidity	\%load	0\%	70\%	50\%	100\%
Split LDV/HDV	\%HDV	0\%	80\%	100\%	20\%

Scenario	$\begin{gathered} \text { DTV } \\ \text { veh/day } \end{gathered}$	Lanes (both directions)	$\begin{gathered} \hline \text { Flow Speed } \\ \text { LDV } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Flow Speed } \\ \text { HDV } \\ \hline \end{gathered}$	$\underset{\substack{\text { Fluidity } \\ \text { (determines road } \\ \text { load) }}}{ }$	Spatial Factor (see remarks)	$\begin{gathered} \mathrm{p} \% \mathrm{HDV} \\ \hline \mathrm{M}>3.5 \text { to } \end{gathered}$	Exposed People people/km	Observer Pos $[\mathrm{m}]$	Length Stream [m]	Available Space $[\mathrm{m}]$	Road Utilization $[\%]$	Cycle Split			
			[km/h]	[km/h]									Acceleration	Deceleration	Stand	Cruise
Residential Area $25 \mathrm{~km} / \mathrm{h}$	1500	2	25	20	90\%	2,0	0,5\%	50	7,5	52658	1200000	4\%	5\%	5\%	5\%	85\%
Main Street $30 \mathrm{~km} / \mathrm{h}$	15000	2	30	25	80\%	3,0	1,0\%	500	7,5	904725	1440000	63\%	10\%	10\%	10\%	70\%
Main Street $50 \mathrm{~km} / \mathrm{h}$	25000	2	50	35	50\%	4,0	1,0\%	300	7,5	3005500	2400000	125\%	25\%	25\%	25\%	25\%
City Arterial $50 \mathrm{~km} / \mathrm{h}$	40000	4	50	35	40\%	2,0	2,0\%	100	20	2408800	4800000	50\%	30\%	30\%	30\%	10\%
City Arterial $70 \mathrm{~km} / \mathrm{h}$	80000	6	70	65	40\%	2,5	5,0\%	50	20	8105000	10080000	80\%	30\%	30\%	30\%	10\%
City Motorway $100 \mathrm{~km} / \mathrm{h}$	110000	6	100	80	50\%	2,5	10,0\%	30	50	15207500	14400000	106\%	25\%	25\%	25\%	25\%
Motorway $120 \mathrm{~km} / \mathrm{h}$	45000	4	120	85	50\%	2,0	15,0\%	5	50	5789250	11520000	50\%	25\%	25\%	25\%	25\%
Motorway $120 \mathrm{~km} / \mathrm{h}$	180000	8	120	85	85\%	2,0	15,0\%	5	50	23157000	23040000	101\%	8\%	8\%	10\%	75\%

Explanation: the left part with the yellow field are data entry field to define a reference condition.
Each scenario is defined by the following parameters:

DTV \rightarrow Traffic volume on a street segment in vehicle per day

Number of lanes for both direction $\boldsymbol{\rightarrow} 2$ lanes means one lane per driving direction)
Flow speed LDV and HDV \rightarrow is likely different on all streets
Fluidity \rightarrow defines how interrupted the traffic is. Interruption could come from too many vehicles, too many vehicles force standstill or lower speed
Spatial factor \rightarrow parameter which enables extra space/time for crossings, traffic lights, space for lane Share of HDV \rightarrow percentage of HDV from the DTV (means LDV is calculated by 100%-p\%HDV)

For estimation of noise on affected people, two additional parameter are suggested
Exposed people \rightarrow people that are assigned to that street (likely less that to street (Ikely less nato to street \rightarrow see CNOSSOS

Observer position \rightarrow How far
Observer position \rightarrow H from the street do we location)

The right part contains calculation formula, so do not touch these cells.
Length stream \rightarrow lining up all vehicles in a chain and determine the length of that chain (a LDV is estimated 5 m long HDV 18 m long, each vehicle is supposed to have double speed distance)

Available Space $\boldsymbol{\rightarrow}$ Determines how much road length is available for the speed within 24 hours multiplied with the number of lanes

Road Utility $\boldsymbol{\rightarrow}$ ratio between needed space (length stream) and available space $\boldsymbol{\rightarrow} 0 \%$ mean free flow, no traffic, 00% mean road fully occupied but might be fluent, >100\% road capacity exceeded system with go to congestion The Cycle split provides percentage per diving condition and can be used in simulation models

What is missing is a load definition for the acceleration condition, which I have made, but not yet included

