PMP: SUB 23 NM

REVIEW

B. Giechaskiel, G. Martini

Institute for Energy and Transport
Joint Research Centre

21 November 2013
Outlook

- Introduction
- Primary particles
- Solid <23 nm (review)
- Experimental investigation at JRC
- Feasibility of sub 23 nm measurement for PNCs
- Feasibility of sub 23 nm measurement for VPRs
- Summary
Outlook

• Introduction
• Primary particles
• Solid <23 nm (review)
• Experimental investigation at JRC
• Feasibility of sub 23 nm measurement for PNCs
• Feasibility of sub 23 nm measurement for VPRs
• Summary
PMP method

- *Introduction in the Light-Duty vehicles emissions legislation (R83)*
 - From Euro 5b (2011) for Diesel
 - From Euro 6 (2014) for Gasoline Direct Injection

- *Introduction in the Heavy-Duty engines emissions legislation (R49) from Euro VI (2014)*
Dilution air conditioning

Full dilution tunnel

PN

PM

In the CVS

After the PN system

Nucleation Mode

Accumulation mode

Coarse mode

Number Concentration

10 nm 100 nm 1000 nm

10 nm 100 nm 1000 nm

Measured from PNC Removed from cyclone

Primary particle (Spherule)

Agglomerate (soot)

Condensed material

Nuclei

Filter

Agglomerate

Non-Volatile Fraction (Soot and ash)

Volatile Fraction (Organics, sulfates, nitrates)
Volatile Removal Efficiency

\[
P_{30} \leq 1.3 \quad \text{and} \quad P_{50} \leq 1.2
\]

>99% of ≥30 nm tetracontane with \(10^4\) p/cm³

PNC

- Full flow
- ±10% accuracy
- \(t_{90} < 5\) s
- \(\text{CE}_{23} = 0.50 \pm 0.12\)
- \(\text{CE}_{41} \geq 0.9\)

PND_2 (Not required)

- \(t\) to PNC < 35°C
- RT to PNC ≤ 0.8 s \((d_{in} \geq 4\) mm)

Evaporation Tube

- 300-400°C wall temperature
- no RT restriction

PTS

- RT to PND_1 ≤ 3 s
- \(d_{in} \geq 8\) mm
- Re < 1700

PND_1

- DF > 10
- PND_1 \(t_{sample} > 150°C\)

UNECE Reg. 83
Objectives

- **Existence of <23 nm solid particles**
- **Feasibility of <23nm measurements**
 - PNCs
 - Volatile Removal Efficiency of the VPR
 - Formation of particles in the VPR
Outlook

• Introduction
• Primary particles
• Solid <23 nm (review)
• Experimental investigation at JRC
• Feasibility of sub 23 nm measurement for PNCs
• Feasibility of sub 23 nm measurement for VPRs
• Summary
Primary particles

- *Primary particles are around 25 nm.*
- *Similarly for GDI particles. However for GDIs:*
 - The distribution of primary particles is wider, so larger percentage of particles will exist <23 nm.
 - The structure of primary particles is sometimes different (more amorphous) probably due to unburned hydrocarbons or volatile organics due to fuel impingement at early fuel injection time.
 - Differences in thermal pre-treatment might be important
Size distributions

<table>
<thead>
<tr>
<th>Technology</th>
<th>PN</th>
<th>CMD</th>
<th>σ</th>
<th>PM</th>
<th>Ash</th>
<th>Soot</th>
<th>Organic</th>
<th>Sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[p/km] or [p/kWh]</td>
<td>[nm]</td>
<td>[-]</td>
<td>[mg/km] or [mg/kWh]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
</tr>
<tr>
<td>HD Diesel</td>
<td>$5 \times 10^{13}-2 \times 10^{14}$</td>
<td>50-100</td>
<td>1.7-2.1</td>
<td>20-80</td>
<td>5-10</td>
<td>40-75</td>
<td>20-50</td>
<td>0-15</td>
</tr>
<tr>
<td>HD DPF</td>
<td>$5 \times 10^{10}-2 \times 10^{12}$</td>
<td>60-75</td>
<td>1.6-2.0</td>
<td>1-4</td>
<td>0-5</td>
<td>5-20</td>
<td>20-50</td>
<td>5-60</td>
</tr>
<tr>
<td>LD Diesel</td>
<td>$2 \times 10^{13}-2 \times 10^{14}$</td>
<td>40-80</td>
<td>1.7-1.9</td>
<td>10-40</td>
<td>0-5</td>
<td>55-90</td>
<td>10-40</td>
<td>5-15</td>
</tr>
<tr>
<td>LD DPF</td>
<td>$5 \times 10^{10}-6 \times 10^{11}$</td>
<td>45-75</td>
<td>1.7-2.1</td>
<td>0-2</td>
<td>0-5</td>
<td>0-15</td>
<td>40-75</td>
<td>5-35</td>
</tr>
<tr>
<td>LD G-DI lean</td>
<td>$2 \times 10^{12}-2 \times 10^{13}$</td>
<td>50-85</td>
<td>1.7-2.1</td>
<td>1-20</td>
<td>0-5</td>
<td>55-80</td>
<td>20-40</td>
<td>0-5</td>
</tr>
<tr>
<td>LD G-DI stoich.</td>
<td>$1 \times 10^{12}-8 \times 10^{12}$</td>
<td>40-75</td>
<td>1.7-2.0</td>
<td>1-10</td>
<td>0-5</td>
<td>75-90</td>
<td>10-25</td>
<td>0-5</td>
</tr>
<tr>
<td>LD G-PFI</td>
<td>$2 \times 10^{10}-6 \times 10^{11}$</td>
<td>45-75</td>
<td>1.6-2.2</td>
<td>0-2</td>
<td>0-5</td>
<td>10-25</td>
<td>45-80</td>
<td>10-40</td>
</tr>
</tbody>
</table>
Outlook

- Introduction
- Primary particles
- Solid <23 nm (review)
- Experimental investigation at JRC
- Feasibility of sub 23 nm measurement for PNCs
- Feasibility of sub 23 nm measurement for VPRs
- Summary
Solid <23 nm particles review

- **Diesel (40 engines and vehicles):**
 - Sub23 nm particles can be found at older and modern without exhaust after-treatment or with low particle collection efficiency filters and/or DOCs. They appear mostly at low loads (but even at high).
 - Probably formed in the combustion chamber. Fuel aliphatic hydrocarbons or lubricating oil metals or fuel additives can also contribute.
 - Regeneration can also result in increased emissions of sub-23 nm solid particles
HD 100% load

DeFilippo & Maricq 2008

Rönkkö et al. 2013
Solid <23 nm particles review

• **GDIs (10 engines and vehicles):**
 - A shoulder at 20 nm appears. A separate solid nucleation mode is not typical, but the size distribution can peak at small sizes (20 nm or lower) in some operation modes.

• **Gasoline (8 vehicles):**
 - Often observed from the metals of the lube oil or from fuel additives.

• **Moped (12 mopeds):**
 - Very often, probably from the lube oil. In some cases it can be a sampling artifact.
Figure 13. Phase 2 Total and Solid Particle Number-Weighted Size Distribution for Fuels A, B, and C

GDI, vehicle Khalek et al. 2010

Moped Giechaskiel et al. 2010
Outlook

- Introduction
- Primary particles
- Solid <23 nm (review)
- Experimental investigation at JRC
- Feasibility of sub 23 nm measurement for PNCs
- Feasibility of sub 23 nm measurement for VPRs
- Summary
JRC investigation

Euro 5b limit

-7°C

re-nucleation?
JRC investigation

- GDIs have slightly higher percentage of solid sub 23 nm particles compared to diesel vehicles
- The percentages are typically < 60%
- Size distributions showed nucleation mode peaking at 10 nm.
- No extreme percentages at the 10^{12} p/km range
- The percentage seems to increase with lower emission levels. However, this could be due to the lower concentrations measured with the 3025A (which uses internal averaging)
JRC investigation

- Low temperatures (-7°C) increase these percentage
- Regeneration showed similar percentages
- Size distributions during regeneration showed no distinct solid nucleation mode particles.
- One case with high percentage was due to re-nucleation in the VPR
Outlook

- Introduction
- Primary particles
- Solid <23 nm (review)
- Experimental investigation at JRC
- Feasibility of sub 23 nm measurement for PNCs
- Feasibility of sub 23 nm measurement for VPRs
- Summary
Feasibility of sub23: PNCs

- *Lowering the cut-off of PNCs is advantageous: smaller material dependence*
Feasibility of sub23: PNCs

• *Down to 10 nm possible with existing PNCs (no extra investment costs)*

• *Below 10 nm the calibration material has to be re-investigated, because it’s not so easy to produce small particles at high enough concentrations.*

• *Below 10 nm, electrometers might be necessary since full flow reference PNCs with even lower cut-off size might not exist.*
Outlook

- Introduction
- Primary particles
- Solid <23 nm (review)
- Experimental investigation at JRC
- Feasibility of sub 23 nm measurement for PNCs
- Feasibility of sub 23 nm measurement for VPRs
- Summary
Outlook

- **Feasibility of sub 23 nm measurement for VPRs**
 - Penetration
 - Formation of solids
 - Volatile Removal efficiency
 - Evaporation tube (ET)
 - Evaporation in the VPR
 - Re-nucleation after the VPR
 - Thermodenuder
 - Catalytic stripper (CS)
VPR Penetrations

- Losses increase significantly <23 nm
- 10-40% penetration at 10 nm
VPR penetration

- **Losses of VPRs:** They increase significantly and down to approximately 10 nm is feasible only as indication of existence of particles (the accurate quantification is extremely difficult).

- **Even in that case the PCRF determination should remain based on monodisperse particles of 30, 50 and 100 nm.**

- **Generation of <30 nm solid particles for the VPR calibration:** It is much more difficult but not impossible even with one generator.
Effect of VPR on PN (example)

- (1) *Inlet size distribution*
- (3) *Final measured, corrected for PCRF and slope*
PCRF average determination

<table>
<thead>
<tr>
<th>Case</th>
<th>PMP</th>
<th>ARP</th>
<th>PMP-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE_{50%}</td>
<td>23 nm</td>
<td>10 nm</td>
<td>0.38</td>
</tr>
<tr>
<td>CE_{90%}</td>
<td>41 nm</td>
<td>15 nm</td>
<td>0.90</td>
</tr>
<tr>
<td>slope</td>
<td>1.00</td>
<td>1.00</td>
<td>1.10</td>
</tr>
<tr>
<td>VPR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCRF_{15}</td>
<td>-</td>
<td>-</td>
<td>2.21</td>
</tr>
<tr>
<td>PCRF_{30}</td>
<td>1.30</td>
<td>1.30</td>
<td>1.30</td>
</tr>
<tr>
<td>PCRF_{50}</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
</tr>
<tr>
<td>CMD</td>
<td>σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final PN concentration compared to inlet concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 nm</td>
<td>1.3</td>
<td>0%</td>
<td>18%</td>
</tr>
<tr>
<td>20 nm</td>
<td>1.4</td>
<td>29%</td>
<td>64%</td>
</tr>
<tr>
<td>30 nm</td>
<td>1.6</td>
<td>61%</td>
<td>83%</td>
</tr>
<tr>
<td>40 nm</td>
<td>1.7</td>
<td>78%</td>
<td>92%</td>
</tr>
<tr>
<td>50 nm</td>
<td>1.8</td>
<td>88%</td>
<td>98%</td>
</tr>
<tr>
<td>70 nm</td>
<td>1.9</td>
<td>100%</td>
<td>105%</td>
</tr>
<tr>
<td>90 nm</td>
<td>2.0</td>
<td>105%</td>
<td>109%</td>
</tr>
<tr>
<td>10 nm (50%) + 50 nm (50%)</td>
<td>1.3 + 1.8</td>
<td>44%</td>
<td>58%</td>
</tr>
</tbody>
</table>
Formation of particles in the VPR

- **Indications when sulfur exists**
- **Formed solid particles were $<10 \text{ nm}$**
- **Difficult to justify**
- **Example is reaction of sucrose with strong sulfuric acid**
- **More research is needed**
Volatile Removal efficiency (ET)

- *Evaporation of compounds in the ET*
 - Theoretical calculations show that the evaporation is a fast process (ms) and >200°C most volatiles will evaporate.
 - A few experimental studies confirmed this
 - Tetracontane tests with big sizes (>70 nm) show reduced removal efficiency
Volatile Removal efficiency (ET)

- **Re-nucleation after the ET**
 - Hydrocarbons
 - Tetracontane will re-nucleate at $>10^7 \text{ p/cm}^3$ or 3 mg/m3
 - Diesels without DOCs can emit up to 70 mg/m3, typically 5 mg/m3. With oxidation catalysts the values significantly decrease
 - Considering the dilution in the CVS and the primary diluter, re-nucleation is unlikely for modern technol.
 - Mopeds can reach 700 mg/m3. Re-nucleation is possible
Volatile Removal efficiency (ET)

- Re-nucleation after the ET
 - Sulfuric acid
 - (Theoretically) will re-nucleate at 0.7-3.5 μg/m³
 - Diesels without DOCs can emit up to 200 μg/m³, with DOC up to 10 mg/m³.
 - Fuel <10 ppm and lube <10000 ppm and 100% SO₂ to SO₃ conversion translates to <300 μg/m³.
 - Even when considering the dilution in the CVS and the primary diluter, re-nucleation is likely.
 - Experimentally it has been shown that in some cases sub23nm were re-nucleated particles
Volatile Removal efficiency (ET)

Growth after the ET
- The re-nucleated nucleis are 1-2 nm
- Organics are necessary for the nucleis to grow
- Theoretical calculations and experimental results show that they can grow to 6 nm \((10^{11} \, p/cm^3 \, \text{organics})\) or 20 nm \((10^{14} \, p/cm^3 \, \text{hexadecane, <5 ppm C3})\)
- HC emissions at the outlet of the VPR can be as high as 100 ppm (vehicles) or 3000 (mopeds) at cold starts, thus particles can grow
Volatile Removal Efficiency (TD)

- **Thermodenuder**
- Heater and adsorber
- Adsorption efficiency decreases with time
- Unknown dependency on compounds
- High losses
Volatile Removal Efficiency (CS)

- **Catalytic Stripper (CS)**
 - Removes volatiles by oxidation
 - Even >35 times highest HC concentration (eg moped)
 - Better removal efficiency of tetracontane
 - Traps sulfur
 - Up to 10 mg/m³
 - Might oxidize SO_2 to SO_3
 - Particles might be formed if saturated
 - Higher particle losses
Outlook

- Introduction
- Primary particles
- Solid <23 nm (review)
- Experimental investigation at JRC
- Feasibility of sub 23 nm measurement for PNCs
- Feasibility of sub 23 nm measurement for VPRs
- Summary
Summary

- **Primary particles**
 - Typically 25 nm, but smaller can exist

- **Solid <23 nm (review)**
 - A lot of studies have measure solid sub23nm particles

- **Experimental investigation at JRC**
 - Existence of sub23nm particles was confirmed in percentages of <60% of >23nm (GDI at the high range)
Summary

- **Feasibility of sub 23 nm measurement for PNCs**
 - It is advantageous to decrease the cut-off size
 - Down to ~10 nm no major modifications for existing equipment

- **Feasibility of sub 23 nm measurement for VPRs**
 - Penetrations decrease at small sizes. Acceptable down to 10 nm
 - Evaporation of volatiles typically not an issue
 - Pyrolysis might be an issue with sulfur (<10nm)
 - Re-nucleation and growth is probable
Summary

• With existing equipment reducing the cut-off size is not recommended

• Decreasing the size to ~10 nm is possible but the addition of a CS is recommended. However some issues need to be resolved:
 • Saturation with sulfur
 • Formation of particles
 • SO$_2$ to SO$_3$ conversion

• Below 10 nm is extremely difficult to measure for legislation purposes.
Next steps

- *Is it necessary to measure lower sizes?*
 - Investigation will go on

- *Open issues to be investigated*
 - Regeneration
 - Pyrolysis
 - CS performance
 - Calibration procedures (VPR and PNC) to be updated
Next steps

• *Measurements in parallel with PMP systems with ET and CS devices with both 23nm and ~10 nm PNCs.*

• *Tests without CS should be conducted with as high PCRF as possible (at least 100x10)*

• *When high sub23nm concentrations are measured the tests should be repeated with 10x higher PCRF*
Thank you for your attention!