

Accident analyses for bumper test area project

Prepared by Adam Barrow

Researcher – 11 September 2013

Front bumper analysis in pedestrian impacts

Statistics

- National accident datasets provide an indication of target population but no information on contact position of the pedestrian on the vehicle's bumper
- In-depth accident databases cases can be used to understand the accident situation in more detail, including:
 - Pedestrian contact point on the front bumper
 - Differences in contact point distribution by:
 - Age
 - Sex
 - Movement of pedestrian
 - Vehicle characterisics

National Pedestrian Impact Statistics - UK (STATS19)

Pedestrians hit by cars by <u>severity</u> and <u>year</u>

- Pedestrian casualties account for approx. 12-13% of all road accident casualties in the UK each year
 - Pedestrians hit by cars account for 80% of these
- Number of pedestrian casualties has declined (except for a slight increase in 2011)
- Approx. 22% of pedestrian casualties each year are killed or seriously injured

National Pedestrian Impact Statistics - UK (STATS19)

Pedestrians hit by cars by severity and age of casualty (2000-11)

Casualty age	Killed	Seriously injured	Slightly injured	Total	% killed or seriously injured
0-15	578	22,810	95,248	118,636	20%
16-24	789	10,757	44,868	56,414	20%
25-39	841	9,792	40,544	51,177	21%
40-59	988	9,005	33,540	43,533	23%
60-79	1,158	7,851	20,707	29,716	30%
80+	952	3,893	7,678	12,523	39%
Unknown	24	1,149	8,683	9,856	12%
Total	5,330	65,257	251,268	321,855	22%

- 58% of pedestrians hit were male
- Biggest proportion of pedestrians
 ≤ 15 years (37%)
- Relatively few casualties ≥ 80 years
 - But these casualties have the highest proportion of killed or seriously injured casualties

- 58% of pedestrians were struck by the **front** of the car as the first point of impact
- Higher proportion in KSI casualties
 - 80% of killed
 - 63% of seriously injured

National Pedestrian Impact Statistics - Germany (CARE)

Pedestrians in accidents involving a car by <u>severity</u> and <u>year</u>

- Pedestrian casualties account for approx. 8% of all road accident casualties in Germany each year
 - Pedestrians in accidents involving cars account for just under 80% of these
- Number of pedestrian casualties has declined (except for a slight increase in 2007)
- Between 29% and 33% of pedestrian casualties each year are killed or seriously injured

National Pedestrian Impact Statistics - Germany (CARE)

Pedestrians in accidents involving a car by <u>severity</u> and <u>age of casualty</u> (2000-10)

Casualty age	Killed	Seriously injured	Slightly injured	Total	% killed or seriously injured
0-15	380	26,470	63,745	90,595	30%
16-24	570	9,113	32,291	41,974	23%
25-39	630	8,332	33,726	42,688	21%
40-59	1,166	13,870	40,013	55,049	27%
60-79	1,822	18,096	29,773	49,691	40%
80+	1,255	7,758	8,311	17,324	52%
Unknown	5	106	1,269	1,380	8%
Total	5,828	83,745	209,128	298,701	30%

- 52% of pedestrians were male
- Biggest proportion of pedestrians
 ≤ 15 years (30%)
- Relatively few casualties ≥ 80 years
 - But over half of these casualties were killed or seriously injured

 No information avaliable on first point of impact on the vehicle

Accident databases

UK & Germany

- Information on 4,700 accidents in the UK from 2000-2010
- 2 teams in distinct areas of the country
 - Vehicle Saftey Research Centre (VSRC), Leicestershire
 - TRL, Berkshire
- TRL analysis, not opinion of the UK DfT

- 23,444 reconstructed accidents in Germany from 1999-2013
- 2 teams in distinct areas of the country
 - Hanover Medical School, Hanover
 - Technical University, Dresden

Accident databases

UK & Germany

OTS

- Sample areas are broadly representative of national statistics except:
 - VSRC slightly higher proportion of pedestrian impacts – URBAN area
 - TRL slighlty higher proportion of car occupant impacts – RURAL area
- Biased towards severe accidents
 - 53% pedestrian KSI compared to 22%
 - But 23% MAIS 3+ which is close
 - Bias could be important if a bumper region particularly safe or dangerous
- Sample = 116 pedestrians

- The sample is representative of German national statistics and is unbiased as:
 - Sample areas accurately represent German topography
 - Large sample size
 - A prescribed statisitcal sampling plan was used
- Sample = 758 pedestrians

Accident databases

Method

- The front bumper is divided into 5 equal segments and displayed as a percentage of full width of the vehicle
 - Not just test area
- GIDAS provides greater accuracy and divided the bumper into 10 segments – (but for some comparisons with OTS these have been reduced back to 5)
- Both datasets use 0% as Right side of vehicle and 100% Left side
 - So offside (O/S) and nearside (N/S) are opposite
- Pedestrian contact position on the bumper is determined with:
 - Recorded measurements on scene
 - Pedestrian and vehicle paths
 - Photographs of evidence on the vehicle

Dataset analysis

- Initial overview of pedestrian contact position in the datasets:
- First 'null' hypothesis:

There is equal probability of a pedestrian being struck across the full width of the bumper

- Chi-squared goodness-of-fit test
 - Tests for a difference between the number of casualties struck in each of the contact positions and the theoretical number if the distribution was uniform across the bumper
- Second hypothesis:

If distribution of contact positions is not uniform, then the relationship is linear

- Regression line
 - Arises from the fact that pedestrians are more likely to be hit crossing from the N/S

Casualties by contact position

- Chi squared test of goodness of fit:
 - p=0.11
- Distribution of casualties across the bumper contact posistion is not significantly different from a uniform distribution
- Very low numbers in the test
- More pedestrians struck to the nearside
- R² value shows that bumper contact position accounts for 71% of variability in number of casualties across the bumper.
- The relationship is approx. linear

Casualties by contact position

- Chi squared test of goodness of fit:
 - p<0.05</pre>
- Distribution of casualties across the bumper contact posistion is significantly different from a uniform distribution
- More pedestrians struck to the nearside
- When 10 categories are used R²=0.34, but when grouped into 5 approximately 90% of the variablity in number of casualties is explained by contact position
- Relationship is approx. linear

Dataset analysis

- More in-depth analysis of pedestrian and vehicle factors:
- OTS and GIDAS provide a range of information on the pedestrians and vehicles involved:
- Each variable is examined to determine if there is a difference in the distribution across bumper contact position
 - E.g. are females more commonly hit on the N/S of the vehicle than males
- Chi-squared test of independence
 - Tests for difference in the distribution of 2 categories across bumper contact position
- Low sample sizes in some categories of variables prevent statistical analysis – instead analysis of the raw numbers is done

Casualties by pedestrian gender

Contact		Gender		Total
position	Female	Male	Unknown	casualties
0-20	8	10	0	18
20-40	4	10	0	14
40-60	12	10	1	23
60-80	8	14	0	22
80-100	12	17	2	31
Unknown	2	6	0	8
Total	46	67	3	116

- Chi squared test of independence for gender:
 - p<0.10</pre>
- Distribution of female casualties across the bumper contact position is significantly different from the distribution of male casulaties
- At 90% confidence interval

Casualties by <u>pedestrian gender</u>

Contact	Gen	der	Total
position	Female	Male	casualties
0-10	28	37	65
10-20	58	58	116
20-30	47	54	101
30-40	35	30	65
40-50	43	42	85
50-60	38	45	83
60-70	26	28	54
70-80	43	33	76
80-90	26	36	62
90-100	19	32	51
Total	363	395	758

- Chi squared test of independence for gender:
 - p<0.05</pre>
- Distribution of female casualties across the bumper contact position is significantly different from the distribution of male casulaties

Casualties by pedestrian age

OTS

- Kruskall-Wallis test to compare age distribution of casualties across bumper contact position
 - p>0.10 (p=0.59)
- Age distribution across the bumper not significant
- No difference in the age of casualties by bumper contact position

GIDAS

 Only summary data were provided for GIDAS so no test could be performed

Casualties by pedestrian movement prior to impact

	Ped	Pedestrian movement					
Contact position	In path	N/S	0/S	Unknown	Total casualties		
0-20	0	5	13	0	18		
20-40	1	7	5	1	14		
40-60	2	13	8	0	23		
60-80	1	15	5	1	22		
80-100	5	18	6	2	31		
Unknown	1	4	3	0	8		
Total	10	62	40	4	116		

- Chi squared test of independence between pedestrians approaching from N/S vs O/S only:
 - p<0.05</pre>
- Distribution of casualties approaching from the N/S by contact position is significantly different to the distribution approaching from the O/S
- Sample size for categories "In path" and "Unknown" too small for analysis and have been excluded

Casualties by <u>pedestrian movement prior to impact</u>

Control	Ped	estrian mov	ement	Total
Contact position	N/S	O/S	Other	Total casualties
0-10	44	10	11	65
10-20	69	30	17	116
20-30	52	28	21	101
30-40	33	25	7	65
40-50	34	41	10	85
50-60	45	32	6	83
60-70	28	21	5	54
70-80	27	40	9	76
80-90	17	30	15	62
90-100	8	34	9	51
Total	358	290	110	758

- Chi squared test of independence between pedestrians approaching from N/S vs O/S only:
 - p<0.05</pre>
- Distribution of casualties approaching from the N/S by contact position is significantly different to the distribution approaching from the O/S
- Sample size for other categories are too small for analysis and have been excluded

Casualties by vehicle age

OTS

- Kruskall-Wallis test to compare vehicle age distribution across bumper contact position
 - p>0.10 (p=0.60)
- Age distribution across the bumper not significant
- No difference in vehicle age by bumper contact position

GIDAS

 Only summary data were provided for GIDAS so no test could be performed

Casualties by collision speed

OTS

 OTS does not provide accurate enough collision speed for most pedestrian impacts so no test could be performed

GIDAS

 Only summary data were provided for GIDAS so no test could be performed

OTS and GIDAS Dataset summary

Contact Position

- OTS: casualty distribution was statistically uniform (but visibly skewed to the N/S) and approximately linear
- GIDAS: distribution was non-uniform (skewed to N/S) and approximately linear

Pedestrian Gender

- OTS: females have different distributions across the bumper contact positions than males
- GIDAS: females have different distributions across the bumper contact positions than males

Pedestrian Movement

- OTS: pedestrians approaching from the N/S have different distribution across the bumper contact positions than those from the O/S
- GIDAS: pedestrians approaching from the N/S have different distribution across the bumper contact positions than O/S

Vehicles age

- OTS: no significant effect from vehicle age
- GIDAS: unknown
- Where possible analyses were repeated excluding vehicles registered before 2000 – results were very similar to the full analyses

Conclusions in relation to injury risk across the bumper

- Increased risk of pedestrian contact to the N/S of the bumper is cancelled out by the linear relationship
 - The increased risk to the N/S is directly balanced by the reduced risk to the O/S
 - This assumes that the bumper and its sub-structures are symmetrical
- Gender differences resulted in different distribution of pedestrian impact across the bumper and may also influence injury risk (males are typically taller, etc.)
 - Difference in lower limb length and therefore contact point on the limb
 - Structural differences (e.g. in bone density and muscle density) may also influence injury risk

Injury risk

- The next part of the analysis aims to determine if there is a greater risk of injury at the outskirts of the bumper compared to the centre or if injury risk is also linear across the bumper.
- Sample numbers are too small to perform any analysis and so conclusions are drawn from the actual values displayed in the tables

Casualties by whole-body MAIS and contact position

MAIS	Unknown	0-20	21- 40	41- 60	61- 80	81- 100	Total
0	3	2	2	2	4	4	17
1	3	8	7	9	6	8	41
2	1	5	2	8	2	6	24
3	1	2	0	2	3	8	16
4	0	0	1	1	4	1	7
5	0	0	0	1	2	1	4
6	0	0	0	0	0	0	0
9	0	1	2	0	1	3	7
Total	8	18	14	23	22	31	116

- MAIS 1 and 2 casualties appear to vary very little across bumper contact point
 - Peaking in the centre of the bumper
- Casualties with MAIS 3 are more frequent towards the N/S outskirts of the bumper
 - Highest possible MAIS for lower extremity is 3

Casualties by whole-body MAIS and contact position

Casualties by whole-body MAIS and contact position German In-Depth Accident Study

MAIS	0-20	21-40	41-60	61-80	81- 100	Total
0	0	0	0	0	0	0
1	21	24	26	19	15	105
2	25	20	11	12	20	88
3	5	2	1	3	2	13
4	3	1	2	3	2	11
5	1	4	1	1	1	8
6	3	0	0	2	0	5
9	5	0	4	3	2	14
Total	63	51	45	43	42	244

- MAIS 1 casualties mostly contact the bumper in the centre
- MAIS 2 casualties are common at the outskirts of the bumper
- MAIS 3+ casualties are fairly consistent across the bumper
 - Small numbers of casualties

Casualties by whole-body MAIS and contact position

Casualties by <u>body region</u> and <u>contact position</u> – AIS 1 only

	Unknown	0- 20	21- 40	41 - 60	61- 80	81- 100	Total
whole leg	0	0	0	0	0	0	0
upper leg	0	0	0	0	0	0	0
knee	0	0	0	0	0	0	0
lower leg	0	0	1	0	0	0	1
ankle	0	0	0	0	0	0	0
foot	0	0	0	0	1	0	1
unknown or unclassifiable	5	13	14	20	28	33	113
Total	5	13	15	20	29	33	115

- Almost all are unknown or unclassifiable
- In OTS skin abrasions and contusions are not coded with a body region
- These types of injuries almost entirely account for the unknown/unclassifiable AIS 1 injuries
- Distribution of these injuries follows the skew to the N/S contact positions and is linear (R²=0.97)

Casualties by <u>body region</u> and <u>contact position</u> – AIS 1 only

- AIS I OHIY								
	0-20	21- 40	41- 60	61- 80	81- 100	Total		
whole leg	0	0	0	0	0	0		
upper leg	2	1	2	3	2	10		
knee	12	13	9	14	5	53		
lower leg	14	13	9	9	7	52		
ankle	2	2	0	1	1	6		
foot	5	2	1	3	0	11		
unknown or unclassifiable	2	0	3	2	0	7		
excluded (hip or pelvis)	0	0	0	1	1	2		
Total	37	31	24	33	16	141		

- Primarily knee and lower leg injuries
- Both body regions have a greater number of injuries at the N/S following the distribution of pedestrian contact position

Casualties by <u>body region</u> and <u>contact position</u> – AIS 2 only

	Unknown	0- 20	21- 40	41- 60	61- 80	81- 100	Total
whole leg	0	0	0	0	0	0	0
upper leg	0	0	0	0	0	0	0
knee	0	3	0	1	1	2	7
lower leg	1	2	5	11	4	7	30
ankle	0	0	0	1	0	0	1
foot	0	0	0	0	0	4	4
unknown or unclassifiable	0	0	0	3	0	1	4
Total	1	5	5	16	5	14	46

- AIS 2 injuries are primarily lower leg injuries with some knee injuries
- Most lower leg injuries occur in the middle segment of the bumper

Casualties by <u>body region</u> and <u>contact position</u> – AIS 2 only

- AIS 2 Offig							
	0-20	21- 40	41- 60	61- 80	81- 100	Total	
whole leg	1	0	0	0	0	1	
upper leg	0	0	0	0	0	0	
knee	3	2	2	3	3	13	
lower leg	16	21	10	10	7	64	
ankle	0	0	0	0	0	0	
foot	0	0	0	1	0	1	
unknown or unclassifiable	0	0	0	0	1	1	
excluded (hip or pelvis)	0	0	0	0	0	0	
Total	20	23	12	14	11	80	

- Most AIS 2 injuries are also lower leg with some knee injuries
- Knee injuries are fairly consistent across the bumper
- Lower leg injuries are skewed towards the N/S

Casualties by <u>body region</u> and <u>contact position</u> – AIS 3+ only

7 (10 0 1	<u> </u>						
	Unknown	0- 20	21- 40	41- 60	61- 80	81- 100	Total
whole leg	0	0	0	0	0	0	0
upper leg	0	1	0	1	3	4	9
knee	0	0	0	0	1	0	1
lower leg	0	1	1	0	0	0	2
ankle	0	0	0	0	0	0	0
foot	0	0	0	0	0	0	0
unknown or unclassifiable	0	0	0	0	0	0	0
Total	0	2	1	1	4	4	12

- All upper leg injuries are AIS 3 or above
- With the most injuries occurring on the N/S

Casualties by <u>body region</u> and <u>contact position</u> – AIS 3+ only

AISSI OIIIY										
	0-20	21- 40	41- 60	61- 80	81- 100	Total				
whole leg	0	0	0	0	0	0				
upper leg	1	1	1	1	0	4				
knee	0	0	0	0	0	0				
lower leg	5	0	4	6	2	17				
ankle	0	0	0	0	0	0				
foot	0	0	0	0	0	0				
unknown or unclassifiable	0	0	0	0	0	0				
excluded (hip or pelvis)	0	0	0	0	0	0				
Total	6	1	5	7	2	21				

- AIS 3+ injuries primarily occur in the lower and upper leg
- Distribution of these injuries is fairly consistent across the bumper contact positions

Summary of bumper injury risk

Sample size

- Not really large enough numbers to draw strong conclusions
- Can still be indicative of the injury risks associated with the outskirts of the bumper

Correlation with whole-body MAIS

 In both datasets, lower extremity AIS injury distributions across the bumper contact positions mirror the whole-body MAIS distribution for that dataset

OTS

- AIS 1 injuries have not been assigned any body regions
- AIS 2 injuries are mainly lower leg and some knee injuries with even distribution across the bumper
- AIS 3+ injuries are mostly upper leg and at the N/S of the bumper

- AIS 1 injuries are mainly lower leg and more common to the N/S
- AIS 2 injuries are mainly lower leg and more common to the N/S
- AIS 3+ injuries are lower and upper leg and fairly even across the bumper

Conclusions

- Frequency of contact
 - Distribution varies from nearside to offside
 - If this is linear progression then, assuming vehicle symmetry, no point more or less likely to be struck
 - Note some influence of pedestrian gender, etc.
- Bumper injury risk
 - As ever, small numbers inhibit potential for analysis
 - Some injuries/severity of injuries seem to have peak around edges of vehicle front
 - Sometimes inconsistent trends between OTS and GIDAS
 - No evidence that extremities of bumper are 'safe'

