

Current Discussion for Overshoot Duration

Condition for Parametric Study Representing Dynamic Test

- Applying Initial Velocity to Bonnet -

Purpose: To identify the simulation condition for identifying HIC increase ratio as a function of bonnet velocity

Condition1:

Dynamic activation of DPPS

Simulate actual dynamic test by representing constraint at lock and lift of actuator (mainly rotational motion)

Condition2:

Apply initial translational velocity to free bonnet component

Apply the impact angle directional component of translational bonnet velocity obtained from "Conditon1" as the initial velocity to the no-constraint bonnet (Translational motion)

Difference of HIC between two conditions: 3.2%

Headform Impact simulation using no-constrain bonnet with initial velocity can be used for parametric study to obtain the relationship between bonnet velocity and HIC increase

Relationship Between Bonnet Velocity and HIC Increase

Car model and simulation condition

- Car model: with active bonnet (static test is available in all of headform test area)
- Impact Point: 4 locations
- Impactor: Child 50 degree
- Bonnet initial velocity: 0 to 0.6 m/s

Impact simulations using no-constrain bonnet with initial velocity were conducted

Relationship between bonnet velocity and HIC increase

Identify the bonnet velocity threshold for static test in overshoot duration from the relationship between bonnet velocity and HIC increase