Document FRAV-27-08

Informal Working Group on Functional Requirements for Automated Vehicles

Status Report

13th GRVA Session 23-27 May 2022

DRAFT FOR DISCUSSION PURPOSES ONLY

FRAV current status

- Updated draft safety recommendations
- Three paths to verifiable criteria
 - DDT performance within model expectations
 - OEDR framework to determine property detection for ORU recognition
 - Roles approach for ADS interactions with users

Model-based approach to DDT

- RAV
- Driving requires adaptation to local conditions and assumptions.
 - FRAV cannot harmonize traffic laws, signs, languages, human behaviors, etc.
 - ADS respond to real-time conditions in virtual infinite combinations.
- Global specifications can address desired behaviors/responses.
 - Respond to conditions in manner consistent with global specifications and safety expectations.
- Models represent performance expectations.
 - Address nominal driving and collision avoidance/mitigation.
 - Allow for local constraints and parameters.
 - Performance acceptable if satisfies model expectation.

Model-based approach to DDT

RAV

- DDT workstream assessing various models.
 - Aim to agree on models that provide a basis for determining safety of ADS driving performance.
 - Anticipate multiple models that may be used to demonstrate compliance.
 - Models provide verifiable criteria for safe performance in scenario, but no single model can cover full range of scenarios.
 - Careful and competent driver model, state-of-the-art performance model, mathematical safety envelope model, etc.
- Expectation to furnish global specifications with annexes providing models for establishing verifiable criteria.
 - Pass/Fail: ADS response under scenario satisfies global requirements within expectations of relevant model.

ORU properties-based approach

- Virtually infinite variety of objects may be encountered worldwide in and around roadways.
- Responses to objects based on physical, functional, and behavioral properties of the objects.
- ADS can detect physical properties that enable recognition and classification (differentiation).
- Properties-based approach covers detection aspect of OEDR.
 - Detect the attributes that enable differentiation of objects based on their functional and behavioral characteristics.
 - Recognize and classify objects in accordance with differences in the safety needs and ADS response expectations.

ORU properties-based approach

- ORU workstream building out OEDR-based framework.
 - Detectable properties to differentiate and classify ORU.
 - Level of differentiation based on functional/behavioral properties.
 - ADS safety recommendations for interactions with subsets of ORU.
- OEDR framework based on detection, recognition, and classification.
 - Basic need to detect safety-relevant objects in and around roadway.
 - Subsets of objects must be recognized to enable correct ADS evaluations and responses (e.g., car, truck, bus, motorcycle, cyclist, pedestrian, animal).
 - In some cases, subsets may need to be further classified (e.g., emergency vehicles have special functions and behaviors).

ORU properties-based approach

- Framework enables ORU-specific provisions where needed.
 - Responses to subsets of ORU.
 - Balance safety needs against safety risks (e.g., beneficial to know ADS in operation against risk of adverse changes in ORU behaviors).
- ORU workstream developing FRAV response to AC.2 mandate regarding external light-signaling.
 - Identify safety-relevant needs for external communication/signaling, if any.
 - Particular attention to communicating ADS operational status.
 - Evaluate possible solutions to meeting needs.
 - Define nature of light-signaling solutions, if any.
 - Deadline set for November 2022.

Roles-based approach to users

RAV

- ADS have different kinds of users.
 - Dependent upon ADS configuration and intended use.
 - Real-time role of the user which may change during a trip.
- Currently focused on in-vehicle user roles (vehicle occupants).
 - Driver controlling the vehicle.
 - Fallback user who may be permitted or requested to intervene in control.
 - Passenger with no possibility for direct physical role in vehicle control.
- Recognize possible external user relationships for future consideration of possible safety needs.
 - Forms of external activation (e.g., "dispatcher").
 - Forms of external control (e.g., "remote operator").
 - Forms of external commands (e.g., "summoning").

Roles-based approach to users

- Address user safety across roles, including but not limited to:
 - User information and education.
 - Driver activation of an ADS.
 - Fallback-user interventions to assume control.
 - Fallback-user responses to transition demands.
 - Transitions of control: notifications, fallback-user feedback evaluations, fallbacks to minimal risk condition.
 - Passenger interactions with ADS in driverless operation.
- Ensure commonality across ADS.
 - Avoid learning-curve risks.
 - Experience transferable across ADS vehicles.
 - Design neutrality: "commonality more than uniformity".

Roles-based approach to users

- Refining input on detailed provisions.
- Structuring recommendations for applicability across ADS use cases.
- Discussing alignment of roles with ADS configurations/use cases.
 - ADS that can be activated by a driver while the vehicle is in motion.
 - ADS that permit or request transitions to fallback user while vehicle moving.
 - ADS that only permit either ADS or driver control for duration of a trip.
 - ADS passenger vehicles with no driver controls (driverless vehicles).
 - ADS vehicles designed solely for goods (no possibility for any occupants).

ADS data and EDR/DSSAD

- EDR/DSSAD addressing data collection/recording, including ADS.
 - EDR/DSSAD requested FRAV perspectives on data collection for ADS vehicles.
- FRAV provided recommendations to EDR/DSSAD
 - ADS data elements should be aligned to ADS configurations/use cases.
 - ADS differ in ways that impact relevant data (e.g., not all ADS would have driver controls, transport occupants, or permit transitions of control while vehicle is moving).
 - ADS data useful in crash investigations and general performance monitoring.
 - VMAD's In-Service Monitoring and Reporting pillar concerns in-use performance.
 - "Crash-event recorder" (EDR) different from uploaded general performance data.
 - User-interactions differ from "TTC minus five seconds" data.
 - User interactions outside "five-second window" may be relevant.
 - ADS can "flag" sequential interactions aligned with safety requirements (e.g., activation, user intervention, transition demand).

DRAFT FOR DISCUSSION PURPOSES ONLY

Document FRAV-27-03 27th FRAV session, 19-20 April 2022 Slide 16

ADS data and EDR/DSSAD

- EDR/DSSAD considered recommendations and requested example(s) to illustrate more concretely.
- FRAV provided "transition of control" example.
 - TOC only apply to ADS that permit fallback-user interventions.
 - TOC may be user-initiated or ADS-initiated.
 - TOC may be successful or unsuccessful. (Based on ADS evaluation of user inputs)
 - ADS can flag sequence of interactions to provide picture of occurrence.
 - Same elements can be used for crash analysis and in-service analysis.
- Communication across EDR/DSSAD, FRAV, and VMAD important.
 - Each group can work individually (i.e., not essential to wait on each other) but share drafts to ensure coherence (i.e., consistent terms and understanding)