Challenges associated with dummy kinematics and booster GRSP IG, Jan 15, 2014, Brussels

Based on:

Comparison of the submarining behaviors of a 6 years old human model and a Q6 dummy in sled testing

Philippe Beillas, Anurag Soni

Université de Lyon, Ifsttar-Université Lyon 1, UMR_T9406, Bron, France

François Renaudin

Dorel SA, Cholet, France

Heiko Johannsen

TU Berlin, Germany

Conf Protection of Children in Cars, Munich, Dec 5, 2013

Introduction

 For older children (e.g. 5-9), the abdomen is among the most frequently injured body regions and risk is higher than for adult occupants

e.g. Lesire et al (2012); Javouhey et al (2006)

Booster seats use reduce the risk...

e.g. Durbin et al (2003)

 Common loading mechanism: abdominal loading by lap belt – due to misuse/presubmarining/belt slippage/submarining

e.g. Arbogast et al (2007)

Illustration of submarining behavior

Introduction

- Protection provided by CRS typically evaluated in dynamic testing with crash tests dummies
- For older children: Q6 and Q10 dummies are currently in use or considered (regulation, consumer testing)
- Biofidelity target defined by regional impacts conditions based on scaling (EEVC WG12 Report 2006)
- What about kinematics response and the belt interaction?
 - Submarining not observed in accident reconstructions (reported in Beillas et al 2012) or sled tests...
 - Biofidelity target not defined explicitely. How to evaluate?

Introduction

- PMHS tests using pediatric specimen are rare
 - Some historical data collected in the 1970s, including sled tests e.g. Wismans (1979), Kallieris (1976)...
 - New studies on abdominal / thoracic loading Ouyang et al. (2006), Kent et al. (2009, 2011)
- Some volunteer tests (CHOP studies Arbogast et al. 2009)
- Data is scarce but combination represents quite a bit for the 6 YO
- Idea: A human modeling approach can be used to consolidate into a model these known responses, and compare model and dummy responses...

Methods: human model development & variations

Development:

- Based on CT-scan of a 6YO child + Scaling using GEBOD data
- Simplified head neck, upper extremities, lower extremities
- Properties: From literature with adjustment

Methods: human model development & variations

Development:

- Based on CT-scan of a 6YO child + Scaling using GEBOD data
- Simplified head neck, upper extremities, lower extremities
- Properties: From literature with adjustment
- "Validation"/check matrix
 - Regional: 6 conditions from PMHS studies on the thorax or abdomen
 - Kinematic response: Wismans et al (1979) and Arbogast et al, (2009).
 - Lumbar flexion (HIII 6YO flexion test)
- Variations: rigidification of lumbar spine, thoracic spine, thorax stiffness, ...

EEVC O dummies corridor **Abdomen compression**

Methods: sled setup

- Surrogates: 6 Y.O. human model + Q6 physical dummy + Q6 numerical model
- Bench:
 - NPACS bench with standard foam (all)
 - NPACS bench with reduced angle (5degree, tilted, dummy model) or modified cushion (5degrees, reduced thickness, all)
 - NPACS bench with modified stiffness (simulation only)
 - Without booster, with simplified booster (simulation only)
- Pulse:
 - R44 pulse (all)
 - NPACS pulse (dummy and human simulations)

Results: Example of validation Thorax impact (Ouyang et al, 2006)

- Sharp force increase
- Close to the corridor after that...

Results: Example of validation

Volunteer sled

(Arbogast et al, 2009)

Example of validation tests – Sled with harness Wismans et al (1979)

Example of simulation check: Torso-Flexion Test: (H3 part 572 style)

Simplified setup: 0.5m/s

Model Response: 160 N @ 45 degrees

Results: physical dummy tests

No abdominal loading without booster

 A booster is <u>not</u> needed to protect the Q6

- Criteria OK, kinematicsOK, <u>ANY CRS</u> wouldpass...
- Same results for Q10
 already shown (Beillas et al., Icrash 2012)

Results: human simulations

- No CRS: submarines
 - And also rigid lumbar spine, ribcage, ...
- Rigid foam or complete spine or CRS: no submarining

Results: human simulations

- No CRS: submarines
 - And also rigid lumbar spine, ribcage, ...
- Rigid foam or complete spine or CRS: no submarining
- Pulse has an effect

Results: dummy simulations

- No CRS, normal or modified cushion ECE R44 pulse: no submarining
 - And also softer lumbar spine, no abdomen, etc.
- NPACS + rigid pelvis flesh (x10), or NPACS + reduced angle: submarines
- ECE R44 pulse + filling of gap between casting and flesh (flesh mat): flat cushion submarines, standard cushion no submarining

Results: dummy modification attempts

- Change gap at hip / R44: kinematic change but still no submarining or no obvious submarining
 - APTS used in few tests: pressure remains low...

Dorel reinforcement

Ifsttar insert (for Q3...)

		Human model	Q6 model	Q6 test
R44	baseline	YES	NO	NO
NPACS	baseline	YES	NO	-
R44	WITH CRS	NO	-	NO
NPACS	WITH CRS	NO	-	-

	Baseline: NPACS bench, no CRS	Human model	Q6 model	Q6 test
R44	baseline	YES	NO	NO
NPACS	baseline	YES	NO	-
R44	WITH CRS	NO	-	NO
NPACS	WITH CRS	NO	-	-
NPACS	stiff spine or stiff bench	NO	-	-

	Baseline: NPACS bench, no CRS	Human model	Q6 model	Q6 test
R44	baseline	YES	NO	NO
NPACS	baseline	YES	NO	_
R44	WITH CRS	NO	-	NO
NPACS	WITH CRS	NO	-	-
NPACS	stiff spine or stiff bench	NO	-	-
R44	horiz bench	YES	NO	NO
R44	dummy modif	-	NO (filling, softer lumbar)	NO (Dorel, Ifsttar modif)
R44	horiz bench, dummy modif	-	YES (filling)	NO (Dorel modif)

	Baseline: NPACS bench, no CRS	Human model	Q6 model	Q6 test
R44	baseline	YES	NO	NO
NPACS	baseline	YES	NO	-
R44	WITH CRS	NO	-	NO
NPACS	WITH CRS	NO	-	-
NPACS	stiff spine or stiff bench	NO	-	-
R44	horiz bench	YES	NO	NO
R44	dummy modif	-	NO (filling, softer lumbar)	NO (Dorel, Ifsttar modif)
R44	horiz bench, dummy modif	-	YES (filling)	NO (Dorel modif)
NPACS	horiz bench	-	YES	-
NPACS	stiffer pelvic flesh	-	YES	-

Discussion and conclusions

 Spine seems to have an effect (also leads to diagonal belt slippage and increased neck force?)

Discussion and conclusions

- Pulse + bench have an effect in simulations...
- Overall, the baseline human model behavior seems in line with epidemiological data. However, the results question the ability of the dummy to evaluate the submarining behavior in the sled conditions...
 - Pulse or bench not sufficient
 - Seems dummy issue → modification needed?
- Impact on future procedure????

Additional material: inflatable CRS/10YO.

P10, R44
 bench/pulse,
 (video provided
 by Britax):
 submarine → fail

Q10, NPACS
 bench/R44 pulse
 (video provided
 by Dorel) → pass
 (other criteria ok)

Perspectives

- Continue work to understand dummy behavior and define test procedure
- Human modeling:
 - Non-linear scaling to 6, 3 and 1.5 Y.O.
 using GEBOD + literature → done
 - Work on the simulation of Kallieris et al (1976) tests (need Golf 1)
 - Improvements will continue (Proetech project and new EC Project PIPER)
 - PIPER Models will be licensed for wide access
 - (full models coming)

- Acknowledgements
 - Funding from the Proetech Project
 - Initiation of the modeling effect with funding from the CASPER EC Funded Project (2008-2012)

References

- Arbogast et al. (2007) Mechanisms of abdominal organ injury in seat beltrestrained children. J of trauma, 62(6), 1473-1480
- Arbogast et al. (2009) Comparison of kinematic responses of the head and spine for children and adults in lowspeed frontal sled tests. Stapp Car Crash J Nov;53:329-372
- Beillas et al. (2012a) Abdominal Pressure Twin Sensors for the Q dummies: from Q3 to Q10. Proc of the ICrash Conf, Turin, July 18-20
- Beillas et al. (2012) Abdominal Twin Pressure Sensors for the Assessment of Abdominal Injuries in Q Dummies: In-Dummy Evaluation and Performance in Accident Reconstructions. Stapp Car Crash J 56: 387-410
- Durbin et al. (2003) Belt-positioning booster seats and reduction in risk of injury among children in vehicle crashes. J of the Am. Med. Assoc., 289(21), 2835-2840.
- EEVC (2008) Q-dummies Report: Advanced Child Dummies and Injury Criteria for Frontal Impact. Working Group 12 and 18 Report, Doc. 514. April 2008. Available online at: http://eevc.net/
- Javouhey et al. (2006). Are restrained children under 15 years of age in cars as effectively protected as adults? Archives of Disease in Childhood, 91(4), 304-308.
- Kallieris et al. (1976) Comparison between child cadavers and child dummy by using child restraint systems in simulated collisions Paper 760815. Stapp Car Crash Conf, Dearborn, MI.
- Kent et al. (2009) Pediatric thoracoabdominal biomechanics. Stapp Car Crash J Nov;53:373-401.
- Kent et al. (2011) Characterization of the pediatic chest and abdomen using three postmortem human subjects. Proceeding of the 22nd ESV Conf. Washington DC.
- Lesire P. (2012) Abdominal Injuries. Final Workshop of the CASPER Project. Berlin, March 2012. Available online.
- Ouyang et al. (2006). Thoracic impact testing of pediatric cadaveric subjects. J Trauma, 61(6), 1492-1500.
- Sherwood et al. (2003). Prediction of cervical spine injury risk for the 6-year-old child in frontal crashes. Traffic Injury Prevention, 4(3), 206-213.
- Wismans et al. (1979) Child Restraint Evaluation by Experimental and Mathematical Simulation, 23rd Stapp Car Crash Conf Proc, SAE #791017

