26/04/2022

GRPE Informal Working Group on EVE Battery durability in e-buses, view from bus operators Tanguy Bouton, Transdev Group

26/04/2022

SUMMARY

- Introduction: Transdev Group Zero Emission Experience
- Key Figures of Transdev "Average" E-buses
- A Fundamental Parameter of Batteries: the C-Rate
- Battery Degradation Over Time
- Battery Procurement & Warranty Conditions

SPEAKER – TANGUY BOUTON

- 2013 PVI
 - 。 Electric Vehicle Project Manager
- 2015 RATP Dev Dubai
 - Urban Planner
- 2016 Transdev France
 - Energy Transition Business Manager
- 2018 Transdev Corporate
 - Energy Transformation Business Manager
- 2019 Transdev Corporate
 Croup Elect Director
 - Group Fleet Director
- 2019 Transdev Corporate
 - 。 ZE Team Program Manager

INTRODUCTION: TRANSDEV GROUP ZERO EMISSION EXPERIENCE

ZE bus fleet current and prospective evolution¹

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

- 1,800 vehicles are now being operated within the Group
- Transdev has just hit the target of "1,500 e-buses by 2024" ahead of time
- Acceleration is ongoing with higher demand for complete transformation
- The pace could increase even more given stimulus packages and new regulations
- To be noted: very country-specific due to different energy mix orientations

¹ Data is based on existing contracts, vehicle orders and ongoing deliveries to date ² Source: Accuracy analysis, March 2019

³25 KingLong already in operation. 233 Foton e-buses will be added in the 2nd semester of 2022. ⁴43 units as oftoday. More VDL e-buses will be inservice in November 2022

Top 5 largest operations worldwide

VDL

KEY FIGURES OF TRANSDEV "AVERAGE" E-BUSES

	Standard bus (12m)	Articulated bus (18m)
Maker & Model	Heuliez GX 337 ELEC / E-WAY 12m	VDL Citea SLFA-180
Weight (in operation)	19,500 kg	29,000 kg
Nominal battery capacity	350 kWh	180 kWh
Average mileage	220 km/day	300 km/day
Charging operations	1/day	4/day
Charging type	Overnight Plug (CCS Type 2)	Opportunity Pantograph Up (OppCharge)
Charging power	50 kW	300 kW 30 kW

A FUNDAMENTAL PARAMETER OF BATTERIES: THE C-RATE

- Charge and discharge speed of a battery are indicated by the Factor C or C-rate, calculated as the charging or discharging power divided by capacity, or how long in hours (theoretically) to charge the battery from 0% to 100%
- For a **100 kWh battery**:
 - 0.5 C = charging a battery pack in 2 hours with 50kW
 - 1 C = charging a battery pack in 1 hour with 100 kW
 - 3 C = charging a battery pack in 20 min with 300 kW
- High-performance batteries can be charged above 1C
- Slow charging Example : 280 kWh to be charged with a 80 kW charger
 - \circ Charging time 280/80 = 3.5 hours
 - \circ C-rate = 80/280 = 0.29 C

BATTERY DEGRADATION OVER TIME

Storage

Battery ageing/fading

- Side reactions between electrode, electrolyte and current collectors
 - Loss of capacity
 - Impedance rise
- **Battery ageing type**
 - Calendar ageing (I=0)
 - Cycling ageing $(I \neq 0)$

Calendar ageing mechanism

- Formation and growth of the SEI (solid electrolyte interface) layer on the negative (graphite) electrode.
- The main factors accelerating this mechanism are temperature and SoC

Cycling ageing mechanism

- The lithium plating of the negative electrode
- This mechanism is amplified with colder temperatures and higher C-rates
- EV batteries typically reach end of (first) life, EOL, at 80% of initial capacity
 - Thereafter, capacity reduces faster and less predictably
 - Difficult to employ 2nd life battery in fleet, more useful in stationary applications

Number of cycles

Four factors affecting battery life (theoretical data)

the mobility compan

BATTERY PROCUREMENT & WARRANTY CONDITIONS

Battery warranty and specification format used in request for proposal

Example of completed template

QUESTIONS?