Document FRAV-29-07 Submitted by the DDT workstream leader 29th FRAV session, 15 June 2022

Informal Working Group on Functional Requirements for Automated Vehicles

Activities Planning

14 June 2022

FRAV current status

Diversity of ADS and ODD	142 safety proposals	> F	Five "Starting Points"	$\left. \right\rangle$	List of "Safety Topics"	
Safety topics review	Tasks/Objectives	>Cc	mmon Understanding	\rangle	Safety Needs	
General Requirements	Specifications		ADS descriptions		Package Delivery	

Status-quo

- GRVA accepted a 2 year extension of FRAV mandate (June 2024)
 - First step to consolidate FRAV deliverables by June 2023
 - Second Step to integrate FRAV/VMAD work into a unicum
 - OICA/CLEPA proposed roadmap to drive AC.2 decision in June (GRVA-13-18)

General overview of activities

SCOPE

Nominal DDT

Safety-Critical

User Safety

Failure Management

Safety Maintenance

WORKSTREAMS

DDT Performance

CLEPA

ORU Safety

China

User Safety

Netherlands

Performance Data

SAE

APPROACHES

Performance Models

Detectable Properties

User Roles

EDR/DSSAD

FRAV-29-07 29th FRAV session, 15 June 2022 Slide 3

SCOPE

Nominal DDT

Safety-Critical

User Safety

Failure Management

Safety Maintenance

WORKSTREAMS

DDT Performance

CLEPA

ORU Safety

China

User Safety

Netherlands

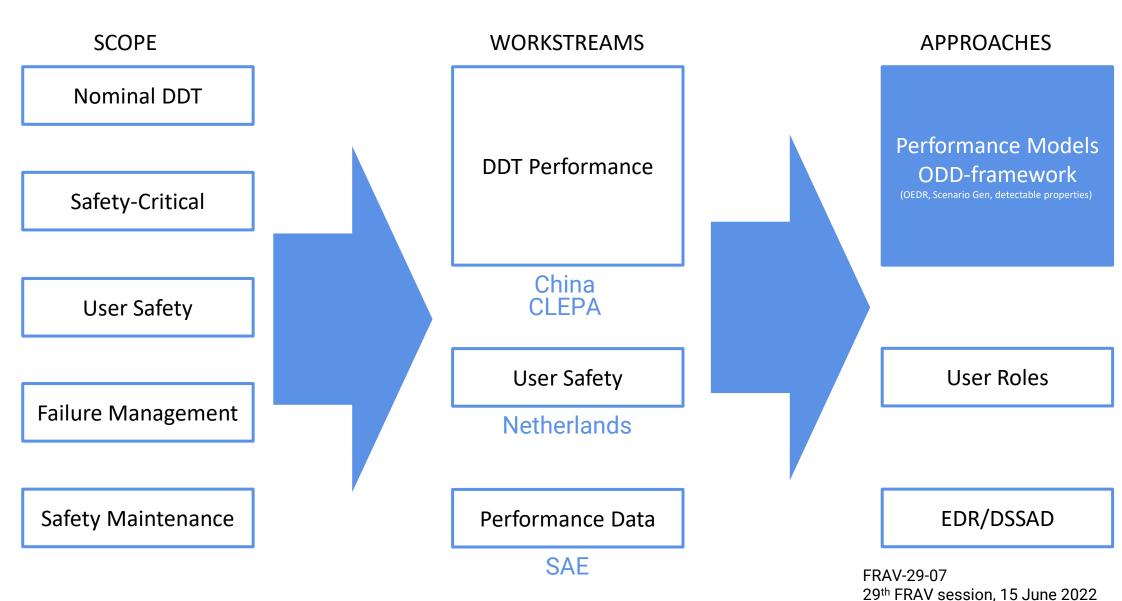
Performance Data

SAE

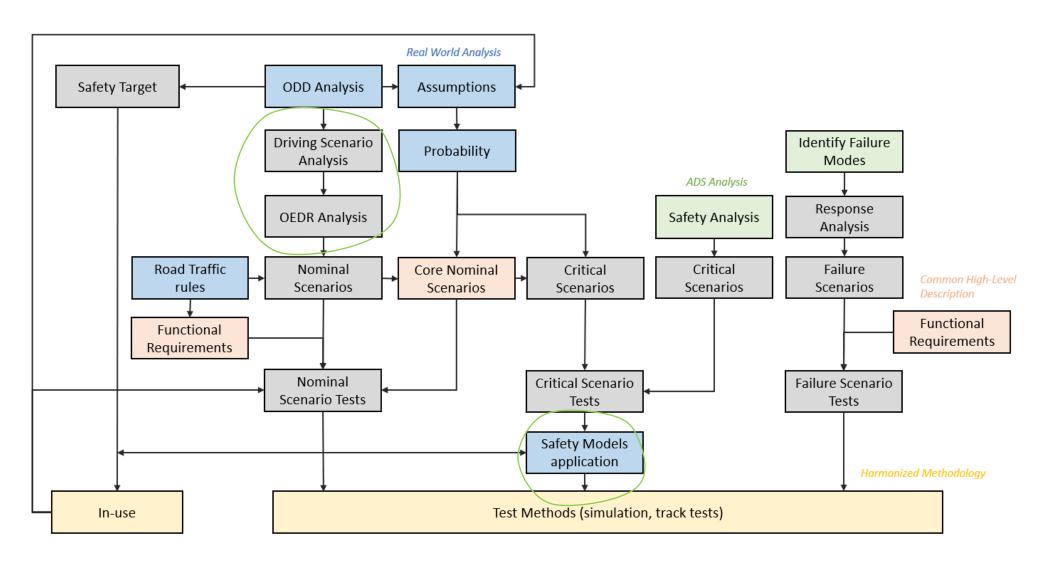
APPROACHES

Performance Models

Detectable Properties


User Roles

EDR/DSSAD


FRAV-29-07 29th FRAV session, 15 June 2022 Slide 4

Slide 5

Driving Analysis

- It aims to address ORU/Objects safety by ensuring that ADS will respond appropriately to roadway objects
- Detectable properties to differentiate and classify ORU and relevant objects
- OEDR-based detection, recognition, and classification

Objects	Events/Interactions		
Vehicles (e.g., cars, light trucks, heavy trucks, buses, motorcycles)	Lead vehicle decelerating (frontal), lead vehicle stopped (frontal), lead vehicle accelerating (frontal), changing lanes (frontal/side), cutting in (adjacent), turning (frontal), encroaching opposing vehicle (frontal/side), encroaching adjacent vehicle (frontal/side), entering roadway (frontal/side), cutting out (frontal)		
Pedestrians	Crossing road – inside crosswalk (frontal), crossing road – outside crosswalk (frontal), walking on sidewalk/shoulder		
Pedalcyclists	Riding in lane (frontal), riding in adjacent lane (frontal/side), riding in dedicated lane (frontal/side), riding on sidewalk/shoulder, crossing road – inside crosswalk (frontal/side), crossing road – outside crosswalk (frontal/side)		

Objects	Events/Interactions		
Animals ⁵	Static in lane (frontal), moving into/out of lane (frontal/side), static/moving in adjacent lane (frontal), static/moving on shoulder		
Debris ⁶	Static in lane (frontal)		
Other dynamic objects (e.g., shopping carts)	Static in lane (frontal/side), moving into/out of lane (frontal/side)		

Objects	Stop, yield, speed limit, crosswalk, railroad crossing, school zone	
Traffic signs ⁷		
Traffic signals ⁷	Intersection, railroad crossing, school zone	
Vehicle signals	Turn signals	

Table 1 - Dynamic elements and their properties

OEDR Analysis: Behaviour Competency Identification

- ADS safety recommendations for interactions with subsets of ORU
- Behaviour competences that can be applied to the events characterizing the ODD to ensure compliance with the applicable regulatory and legal requirements

Event	Response		
Lead vehicle decelerating	Follow vehicle, decelerate, stop		
Lead vehicle stopped	Decelerate, stop		
Lead vehicle accelerating	Accelerate, follow vehicle		
Lead vehicle turning	Decelerate, stop		
Vehicle changing lanes	Yield, decelerate, follow vehicle		
Vehicle cutting in	Yield, decelerate, stop, follow vehicle		
Vehicle entering roadway	Follow vehicle, decelerate, stop		
Opposing vehicle encroaching	Decelerate, stop, shift within lane, shift outside of		
Opposing vehicle encroaching	lane		
Adjacent vehicle encroaching	Yield, decelerate, stop		
Lead vehicle cutting out	Accelerate, decelerate, stop		
Pedestrian crossing road – inside crosswalk	Yield, decelerate, stop		
Pedestrian crossing road – outside of crosswalk	Yield, decelerate, stop		
Pedalcyclist riding in lane	Yield, follow		
Pedalcyclist riding in dedicated lane	Shift within lane ⁹		
Pedalcyclist crossing road – inside crosswalk	Yield, decelerate, stop		
Pedalcyclist crossing road – outside crosswalk	Yield, decelerate, stop		
Lead vehicle decelerating	Follow vehicle, decelerate, stop		
Lead vehicle stopped	Decelerate, stop		
Lead vehicle accelerating	Accelerate, follow vehicle		

Table 2 - Behaviour competences for given events

Safety Models

- Propose multiple modeling methodologies. (safety envelopes, scenario-based, driver modeling, technology state-of-the-art, etc.)
- Compare ADS performance against benchmarks for expected behavior (e.g., ADS performance vs model performance)
- Address collision-avoidance/crash-mitigation boundaries

Verifiable Criteria

- Global requirements with verifiable criteria established via an ODD-based approach
- DDT performance requirements will not be prescriptive
- Approach allows for local constraints and parameters
- Performance acceptable if satisfies model expectation
- Example for Lane-Keeping in <u>FRAV-25-11</u>

Summary

Proposal

- Need to streamline the process and improve efficiency
- Merge similar workstreams to focus on deliverables
 - Safety Models + ORU workstream + (SG1 Scenario Generation?)
 - All covered by the ODD-framework approach
- Other workstream working in parallel (User Role, EDR/DSSAD, ...)
- Ensure verifiable criteria deliverables by June 2023
- FRAV+VMAD editorial merging into a single document post June 2023

Back-up

Safety models for DDT

- Challenge of local variables and assumptions.
 - Local operating conditions cannot be harmonized: Traffic laws, signs, signals, markings, languages, driver education and behaviors, etc.
 - Safe driving depends upon adaptation to local conditions and assumptions.
- Verifiable metrics can be derived from the application of an ODDbased approach.
 - Allow application of local variables and assumptions
 - Propose multiple modeling methodologies. (safety envelopes, scenario-based, driver modeling, technology state-of-the-art, etc.)
 - Compare ADS performance against benchmarks for expected behavior (e.g., ADS performance vs model performance)
 - Address collision-avoidance/crash-mitigation boundaries.

Safety models for DDT

- Global requirements with verifiable criteria established via an ODDbased approach.
 - DDT performance requirements will not be prescriptive.
 - Approach allows for local constraints and parameters.
 - Performance acceptable if satisfies model expectation.
- FRAV analyzing various models.
 - Aim to propose various models that result in safe driving actions.
 - May result in multiple models that may be used to demonstrate performance.
 - Models can address nominal driving and collision avoidance/mitigation.
- Expectation to furnish global specifications with annexes providing methods for establishing verifiable criteria.

ORU properties-based approach

- Objects and other road users (ORU) have attributes detectable by an ADS.
 - These attributes enable differentiation.
- OEDR involves detection, recognition, and classification.
 - At the most basic level, an ADS must detect safety-relevant objects in and around the roadway.
 - Subsets of objects must be recognized to enable correct ADS evaluations and responses (e.g., car, truck, bus, motorcycle, cyclist, pedestrian, animal).
 - In some cases, subsets may need to be further classified (e.g., police car, fire truck, road worker).

ORU properties-based approach

- The properties-based approach aims to address ORU safety by ensuring that ADS will respond appropriately to roadway objects.
 - Detect the attributes that enable differentiation.
 - Recognize and classify objects in accordance with differences in the safety needs and ADS responses.
- This approach relates to issues surrounding ADS communications or signaling in ORU interactions.
 - Some, but not all, ORU may need information from the ADS.
 - For example, law enforcement may need to know if an ADS is operating a vehicle. However, this information could adversely impact ORU behaviors (e.g., increase in higher-risk behaviors based on predictability of ADS responses).

ORU properties-based approach

- ORU workstream building out OEDR-based framework.
 - Detectable properties to differentiate and classify ORU.
 - OEDR-based detection, recognition, and classification.
 - ADS safety recommendations for interactions with subsets of ORU.
- ORU workstream developing FRAV response to AC.2 mandate regarding external light-signaling.
 - Identify safety-relevant needs for external communication/signaling, if any.
 - Evaluate possible solutions to meeting needs.
 - Define nature of light-signaling solutions, if any.
 - Particular attention to communicating ADS operational status.
 - Deadline set for November 2022.