IIHS crashworthiness evaluations for the protection of occupants in lowseverity rear impacts

UNECE Ad-hoc working group 9/22/22

Marcy Edwards Senior research engineer

Whiplash injury over time

Percent of rear struck drivers with neck (or any) injury

Geometry ratings 1995

Early model head restraints

Real-world benefit of improved head restraint geometry

- Driver of vehicles with good rated head restraints are 24% less likely to suffer neck injury than those in poor rated vehicles
- For every rating category, females have a greater benefit from improved head restraint geometry

Estimated percent effect in neck injury rates vs. poor rated

Farmer 1999

Advanced seat designs 2003

Active head restraint examples

Volvo WHIPS

Saab AHR

Advanced seat/head restraint designs

Seating system design change	Vehicle model		
Active head restraint	Buick LeSabre		
	Pontiac Bonneville		
	Saab 900/9-3		
	Saab 9000/9-5		
	Infiniti Q45		
	Infiniti QX4		
Improved geometry	Ford Taurus		
	Mercury Sable		
Advanced seating system	Toyota Avalon		
	Lexus LS 430		
	Volvo S70		

Real-world benefit of advanced seat designs

- Active head restraints had an overall 44% reduction in neck injury rates
- Improved geometry had a 13% reduction in neck injury rates
- Toyota WILS design had a 3% increase in neck injury rates
- Volvo WHIPS had a 31% decrease in neck injury rates

by seat and seat design change 100% 80% 60% 40% 20% 0% Total Total Lexus LS aab 9000/9-5 Infiniti Q45 Infiniti QX4 Ford Taurus ercury Sable **Foyota Avalon** Volvo S70 Saab 900/9-3 ontiac Bonnevi -20% -40% -60% Active head restraint Improved Geometry WHIPS -80% Improvement -100%

Percent change in driver neck injury risk

Farmer 2003

Estimated percent effect of seating design changes on driver neck injury risk

Dynamic testing 2004

Rating table

Geometric Rating	Dynamic Rating	Overall Rating		
Good	Good	Good		
	Acceptable	Acceptable		
	Marginal	Marginal		
	Poor	Poor		
Good Height		> Good		
Acceptable	Good	Acceptable		
	Acceptable	Acceptable		
	Marginal	Marginal		
	Poor	Poor		
Marginal	No dynamic test	Poor		
Poor	No dynamic test	Poor		

IIIIS HLDI

Early model head restraints

Early model head restraints

IIHS HLDI

Dynamic testing 2016 Analysis

IIHS whiplash evaluation

Percent reduction in injury claim rates vs. poor-rated seats

-15%

Additional outcomes

- Newer vehicles had lower injury rates than older vehicles
- The oldest rated drivers had the lowest injury rates
- > The vehicle group with the lowest curb weight had the highest injury rate

The future of IIHS whiplash evaluations

Head restraint ratings by model year

As of August 15, 2022

Current IIHS ratings vs. real-world data

Insurance injury claim rates (PIP/PDL by class and vehicle)

Continue to reduce whiplash injury in low-severity rear impacts

Continue to reduce whiplash injury in low-severity rear impacts

Continue to reduce whiplash injury in low-severity rear impacts

Pre-impact interventions for rear impacts

Pre-impact interventions

IIHS is exploring the potential benefit of systems like Volvo's occupant positioning and Windsor Machine Group's (WMG) active head restraint

Fig. 1. Rear-end impact sequences: a) detection + activation; b) warning; c) braking; d) occupant pre-positioning; e)WHIPS generation 2; f) eCall.

Volvo pre-impact occupant positioning*

WMG pre-impact active head restraint

Continue to reduce whiplash injury in low-severity rear impacts

NCAP rear impact research review

Current assessment program pulses

	IIHS	Euro NCAP < 2020	Euro NCAP 2020+	JNCAP
Euro Low	-	~	-	-
IIWPG/ Euro mid	~	~	~	-
JNCAP	-	-	-	✓
Euro High	-	~	✓	-

Euro NCAP, JNCAP and IIWPG acceleration pulses

II<mark>H</mark>S HLDI

Protocol dynamic rating parameters

IIWPG	EuroNCAP < 2020	JNCAP	Euro NCAP 2020 +
Upper Neck Rearward Shear	Upper Neck Rearward Shear	Upper Neck Rearward Shear	Upper Neck Shear (+/-)
Upper Neck Tension	Upper Neck Tension	Upper Neck Tension	Upper Neck Tension
Head Contact Time	Head Contact Time		Head Contact Time
Maximum T1 Acceleration	Maximum T1 Acceleration		Maximum T1 Acceleration
	NIC	NIC	NIC
	Max NKM		Max NKM
	Head Rebound Velocity		Head Rebound Velocity
		Upper Neck Flexion	Upper Neck Flexion
		Upper Neck Extension	Upper Neck Extension
		Lower Neck Rearward Shear	Lower Neck Shear (ABS)
		Lower Neck Tension	Lower Neck Tension
		Lower Neck Flexion	Lower Neck Flexion
		Lower Neck Extension	Lower Neck Extension
			Seatback dynamic deflection

II<mark>IIS</mark> HLDI

Test matrix

	NAV Find	Dala	Madal				Euro Low	IIWPG/	JNCAP	Euro High
IVIY Begin		маке	Iviodei	PDL #	PIP #	PIP/PUL		Euro mid		
Mid-size cars										
2015	2018	Subaru	Outback	3071	227	7.4%	-	✓	✓	✓
2015	2018	Subaru	Legacy	1288	109	8.5%	-	✓	✓	✓
2014	2018	Mazda	6 4dr	3214	276	8.6%	-	✓	✓	✓
2013	2017	Honda	Accord 4dr	24961	2909	11.7%	-	✓	✓	✓
2013	2018	Ford	Fusion 4dr	8802	1075	12.2%	-	✓	✓	✓
2012	2018	Volkswagen	Passat 4dr	7981	1035	13.0%	-	✓	✓	✓
2015	2018	Hyundai	Sonata 4dr	5555	790	14.2%	-	✓	✓	✓
2012	2017	Toyota	Camry 4dr	30441	4498	14.8%	-	✓	✓	✓
2013	2018	Nissan	Altima 4dr	19351	2979	15.4%	-	✓	✓	✓
Mid-size SUVs										
2016	2020	Mazda	CX-9	957	79	8.3%	-	✓	-	✓
2011	2020	Jeep	Grand Cherokee*	21662	2063	9.5%	-	✓	-	✓
2018	2019	Ford	Explorer	1260	120	9.5%	-	✓	-	✓
2016	2020	Honda	Pilot	5569	555	10.0%	-	✓	-	✓
2019	2020	Subaru	Ascent	305	33	10.8%	-	✓	-	✓
2018	2020	Volkswagen	Tiguan	1275	139	10.9%	-	✓	-	✓
2018	2020	Volkswagen	Atlas	807	90	11.2%	-	✓	-	✓
2018	2020	Chevrolet	Traverse	1265	142	11.2%	-	✓	-	✓
2014	2019	Toyota	Highlander	10199	1188	11.6%	-	✓	-	1
2015	2020	Nissan	Murano	2789	351	12.6%	-	✓	-	1
2014	2020	Jeep	Cherokee**	9424	1187	12.6%	-	✓	-	✓
2013	2018	Hyundai	Santa Fe	2211	280	12.7%	-	✓	-	✓
2018	2020	Кіа	Sorento	1075	152	14.1%	-	✓	-	1

IIHS HLDI * Proactive ** Reactive

Overall ratings

Individual Injury metrics evaluated

Upper Neck Shear

Upper Neck Tension

Head Contact Time

Maximum T1 Acceleration

NIC

Max NKM

Head Rebound Velocity

Upper Neck Flexion

Upper Neck Extension

Lower Neck Shear

Lower Neck Tension

Lower Neck Flexion

Lower Neck Extension

Pelvis Displacement

Individual Injury metrics evaluated

Upper Neck Shear

Upper Neck Tension

Head Contact Time

Maximum T1 Acceleration

NIC

Max NKM

Head Rebound Velocity

Upper Neck Flexion

Upper Neck Extension

Lower Neck Shear

Lower Neck Tension

Lower Neck Flexion

Lower Neck Extension

Pelvis Displacement

Summary and next steps

- Overall rating correlations seen in the mid-size car dataset are not apparent in the midsize SUV data set
- Individual metrics upper extension moment, Max NKM and T1 acceleration showed correlations worth further investigation
- Individual metrics were less likely to show correlations with the injury claim rates with the IIWPG pulse than the Euro NCAP high pulse
- Continued analysis on individual metrics of interest
- Look at the effect of mass disparity in the midsize SUV class on results (e.g. 2WD vs. 4WD)

Continue to reduce whiplash injury in low-severity rear impacts

Virtual testing for rear impacts

Research motivations

- Develop a virtual testing framework that can be used to promote seat safety robustness for a range of occupant size, sex, and seating position
- Lay groundwork for the possible use of human body models to evaluate rear impact whiplash
- Gain organizational experience with virtual testing and explore opportunities where virtual testing could be feasible and beneficial
- Develop a framework for the certification and validation of automaker seat models and/or automaker simulation results, data sharing with automakers and a workflow for virtual testing

Virtual testing research plan

Virtual testing research plan

IIIIS HLDI

Virtual testing research plan

Research Item 1 – Overview

What affects rear impact responses?

Research Item 2 – Model traceability

Sharing information without compromising IP concerns

How do we protect IP concerns?

Fingerprinting

Input-output checker report

Key takeaways

- Current evaluation tools have reduced injuries in rear impacts for both men and women and reduced the gap in risk of injury
- Women are still at a higher risk for whiplash injury than men

IIHS HLDI Virtual testing provides opportunities to address equity and robustness in crashworthiness evaluations Insurance Institute for Highway Safety Highway Loss Data Institute

iihs.org

/iihs.org
@IIHS_autosafety
@iihs_autosafety
IIHS
/company/iihs-hldi
@iihs_autosafety

THANK YOU

Marcy Edwards Senior Research Engineer medwards@iihs.org

