

Amphenol's sensor analysis

09 November 2022

R. Leite Patrão, M. Lazareanu, N. Lebedeva

B. Engle

Outline

- Test conditions
- Pressure data analysis
- H₂ and CO₂ analysis
- Detailed comparison plots
- Amphenol observations and Experiences

Test conditions

- The thermal propagation test was performed in a full vehicle;
- Two Amphenol sensors were positioned in opposite sides of the vehicle's battery pack;
- Two "off-the-shelf" commercially available pressure sensors were installed next to the Amphenol sensors.

Position of pressure sensors

Position of initiation cell

- 1 Electric plugs
- 2 Pack's vent

Test conditions

Test conditions

Pressure data analysis

- Comparable result's between sensors;
- Front "off-the-shelf" sensor has an offset
- Smaller difference between position (front and back) readings for Amphenol's sensor compared to the conventional ones;

H₂ and CO₂ analysis

- Small delay, ca. 12 sec, between
 H₂ readings from the front and back of the battery pack;
- CO₂ readings are synchronised and delayed compared to H₂;
- Gas readings happen slightly after pressure spike, ca. 11 sec;
- CO₂ base values were not representative (~185 ppm).

Conclusions

- Pressure readings from two Amphenol sensors and two "off-the-shelf" commercially available sensors were observed to be consistent and largely independent from their position in the pack.
- Amphenol sensors are significantly smaller compared to the "off-the-shelf" commercially available pressure sensors. This is an advantage for the "inpack" installation.
- The pressure rise was detected before the H₂ and CO₂ gases, ca. 11 seconds earlier;
- The timing of H₂ signal was found to be location-dependent unlike CO₂ signal, which was found to be location-independent.

Pressure & Temperature Response

• 100% SOC cell with thermal trigger is highly energetic – engages additional cells almost immediately

Pressure & Temperature initial venting

- Pressure leads temperature; pressure is uniform in pack air space
- Small initial temperature change with first vent
- Front lower temperature than back until turbulent mixing

Rear Sensor Gas response

Rear Sensor w/ gas & humidity

- H2 exceeds 40 000 ppm Lower explosive limit within ~3-5 seconds; reaching ~150 000ppm
- CO2 sensor exceeds 40 0000ppm, then damaged by gas release, setting fault flag
- Relative humidity climbs from ~50% to 100%

Front/Rear Sensor Gas response

P, T, Gases & Humidity Front/Back

- Front H2 lags rear by ~12 seconds
- Front CO2 lags Rear CO2 by ~10 seconds
- Front RH% peaks ~80%, while rear ~100%

Amphenol Observations / Experiences

- Lower SOC /slower venting can result in minimal pressure change inside pack
 - Pressure sensors challenged to operate in field for low SOC/SOH cells, "slow" venting
- Hydrogen release occurs quickly and above LEL in typical pack
- CO2 responds in similar timeframe with concentrations in excess of 40 000 up to 200 000ppm; acts to inhibit combustion
- Substantial water vapor release with cell venting from combustion products
- Use of H2 and/or CO2 detection consistent across:
 - Cell electrochemistry
 - Cell configuration (cylindrical, prismatic, pouch)
 - Variations in venting systems
- H2 and CO2 tend to indicate presence of other hazardous, flammable gases in similar proportions
- Sensor placement optimal near pack vents for best response
- Additional Observations from testing / validation:
 - Pressure-based systems have exhibited missed detection and false positive events
 - Minimizing free air volume within pack reduces risk of gas combustion inside pack
 - Gas, water vapor, and particles highly conductive, and can lead to arc flash inside pack

