

WLTP-AP


VALIDATION PHASE 2 FOR SELECTED ADDITIONAL POLLUTANTS

Status Report and Open issues

6th WLTP - Vienna, 26-28-April-2014 *M.C. Astorga*

It is perfectly possible to measure NH3 at the exhaust with and "on line" method with all the guaranties of reproducibility and Repeatability of the results.

NH3 measurements in the gas phase of LD vehicles' Exhaust

(3 instruments have been validated during VP2)

The VP2 allows to include method for NH3 in the GTR:

We have recovered the text from the last version of the GTR basically as it was (annex 5 in point 7.1.1 and following). Now includes the instruments and some more precise analytical instrumentation.

A document with the information from the campaign HAS BEEN SENT to the WLTP Chair and is now loaded @ 06-27e

https://www.2014nece.org/wiki/display/trans/WLTP+6th+3session

NH_3

Instrument	Sampling flow (I/min)	Frequency (Hz)	System temp (°C)
FTIR (JRC)	10	1	190
BLAQ-Sys (CGS QCL)	1	1	Sampling 190 Analyzers 100
QCL-IR (HORIBA MEXA1400QL NX)	9	5	113

NH_3

Denomination	DV1	DV2	FFV	GV
Combustion type	Diesel	Diesel	Flex-fuel gasoline/EtOH	Gasoline
EU emission standard	Euro 6	Euro 5	Euro 5a	Euro 5
After-treatment Fuel Fuel system	DPF, SCR B5 TDI	DPF B5 TD	TWC E5 DI	TWC E5 GDI
Engine displacement (cm³)	1968	1560	1596	1390
Engine power (kW)	105	84	132	132
Odometer (km)	22362	18871	24334	38541
Vehicle weight (kg)	1712	1282	1481	1194

DV1 DV2 NH₃ [ppm] Speed [km/h] FFV GV Time [s]

NH₃

Fig3. Real-time ammonia emission concentration for vehicles DV1, DV2, FFV and GV over the WLTC measured by HR-FTIR (blue), HORIBA MEXA 1440 QL-NX (red), and CGS BLAQ-Sys (black).

10 DV1 NH3 CGS BLAQ-Sys ---- Ethylene/10 HR-FTIR 6 6 Ethylene/10 [ppm] 2 DV2 2 Concentration [ppm] 1 **FFV** NH3 CGS BLAQ-Sys Ethylene/10 HR-FTIR 200 NH3 HR-FTIR NH3 HORIBA MEXA 1440 QL-NX 100 600 G۷ 400 200 400 1000 1200 200 600 800 1400 1600 1800 Time [s]

NH_3

Fig4. Concentration of ammonia measured by HR-FTIR (blue), HORIBA MEXA 1440 QL-NX (red), and CGS BLAQ-Sys (black), compared with one tenth of the concentration of ethylene, measured by HR-FTIR (dotted blue) over the WLTC. Ethylene concentration for DV1 and DV2 is found on the right axis.

NH_3

Table 3. Average ammonia concentration from the four tests vehicles, DV1, DV2, FFV and GV using HR-FTIR, HORIBA MEXA 1440 QL-NX, and CGS BLAQ-Sys.

Vehicle	Concentration	JRC HR-FTIR	HORIBA QCL- IR	CGS BLAQ- Sys
DV1	Average ¹	0.5 (±0.1)	0.1 (±0.1)	0.2 (±0.1)
	Max	1.0	0.8	6.6
DV2	Average ¹	0.5 (±0.1)	0.1 (±0.1)	0.2 (±0.1)
	Max	1.0	0.5	2.0
FFV	Average ¹	20 (±7)	21 (±7)	23 (±11)
	Max	135	272	190
GV	Average ¹	22.3 (±0.6)	24 (±1)	24 (±2)
	Max	155.0	587	229

¹Average concentration (ppm) of the three tests performed per vehicle. Max refers to the maximum concentration registered value (ppm) during the three tests.

Date	Name of the file
08.03.2013	WLTP-2013-016 Consolidated Draft GTR
	<u>08.03.2013.docx</u>
Modifications after	Annex 5: test equipment and calibrations:
VP2 for AP	7.1.1. Extractive sampling ,,,,
2014	7.1.1.1,,, and following
	(numbers may change in the new version).

- 7.0 Additional sampling and analysis methods
- 7.1. Sampling and analysis methods for $\mathrm{NH_3}$ NH3 sampling is done in the undiluted exhaust gas. The analyser shall be installed either within an analyser cabinet using extractive sampling in accordance with the instrument manufacturer's instructions or directly in the exhaust pipe (in-situ).
- 7.1.1. Extractive sampling
- 7.1.1.1. The sample path up-stream of the analyser (sampling line, pre-filter(s), pumps and valves) shall be made of stainless steel or PTFE and shall be heated to set point between 110 and 190 °C in order to minimize NH₃ losses and sampling artefacts. In addition, the sampling line shall be as short as practically possible. On manufacturers request a temperature between 110 and 133 °C can be chosen.

VP2 – **NH**3

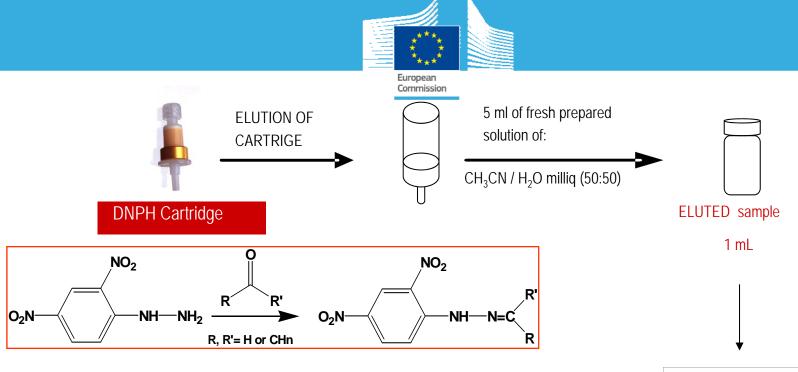
Doc 06-27#

Docs loaded in:

https://www2.unece.org/
wiki/display/trans/WLTP+
6th+session

VP2 for AP RCHO & EtOH

OPEN QUESTIONS
& NEXT STEPS for AP
(after 6th WLTP Vienna;
March 2014- Phase 1b)



RCHO sampling system for DNPH cartridges "classical method"

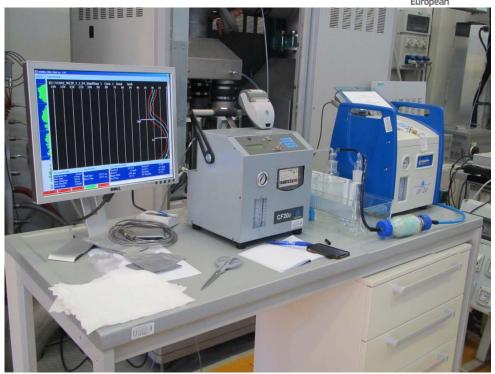
Sampling: diluted exhaust

For Adehyde and Formaldehyde we still need confirmation that the online instrumentation is available and ready to be used

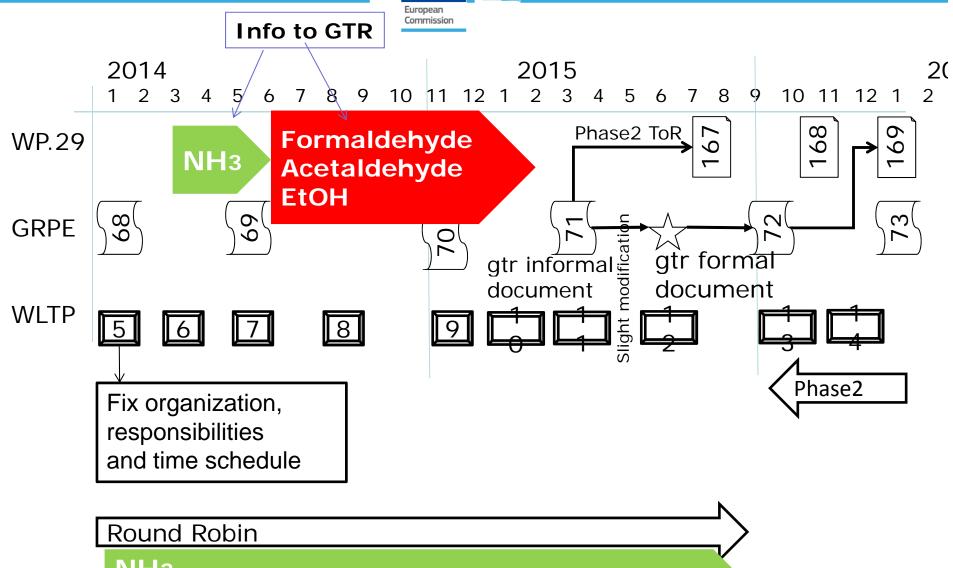
The method described has been developed on the basis of the "compendium of Methods for the Determination of Toxic Organic Compounds in AmbienT Air (2nd Edition)"

EPA/625/R-96/-1-b; Compendium Method TP-11A: Determination of Formaldehyde in Ambient Air Using Absorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC)

impingers for EtOH "classical method"


Sampling: diluted exhaust

HORIBA continuous measurement system for EtOH: Fourier Transform Infra-Red (FTIR) Gas Analyzer


For EtOH we still need confirmation that the online instrumentation is available and ready to be used

How to progress after 6th WLTP Vienna March 2014 (Phase 1B)

WLTP Phase 1b

NH3

6th WLTP Session; Vienna 28th March 2014

Report on NH3 results from the VP2 Sept 203 Doc 06-27e

Docs loaded in:

https://www2.unece.org/wiki/display/trans/WLTP+6th+session

Thanks for your attention (Questions....?)

My acknowledgement to all participants in AP VP2