Study on Camera Monitor Systems (Part 2)

- Analysis of Gaze Behaviour
- Study on Farsightedness

Eike A. Schmidt, Rainer Krautscheid

Informal Group on Camera Monitor Systems in Reg. No. 46
Paris, 05.06.2014

Bundesanstalt für Straßenwesen
Federal Highway Research Institute

A look back: Presentation @ 2nd IG CMS meeting (Berlin)

08
Results: „Last Safe Gap-Method" ($\mathrm{N}=34$, within subject) - The faster the REF-vehicle, the larger the „last safe gap" ($F(2 ; 66)=39.752, p=.000)$ - Tendency of larger gap using CMS (F ($1 ; 33$) $=3.646$, n.s. [p $=.065]$) - No interaction between velocity and used device ($F(2 ; 66)=1.187$, n.s. $[p=.310])$

Both solutions show advantages and disadvantages.
In general distances and velocities can be estimated by using the camera monitor system

Some disadvantages of the CMS could be addressed by the specification of technical requirements.

For the cases investigated there is no significant difference in comparison to using an outside rearview-mirror

Study Design

$\begin{array}{lll}\text { (1) Distance-/Velocity Estimation } & \text { (2) Parking } & \text { (3) Highway Driving }\end{array}$
Subjective: Acceptance; Situational Awareness; Distraction
Objectioe Performance Measures; Gaze Behavior; Seeed Behavior

Display Positions

Highway Driving (Autobahn A4)

Lane change (start of overtakting maneuver)-10 to 0 s

Lane change (end of overtakting man.) -10 to 0 s

Highway Track: Refrath - Overath / Overath - Refrath (Filtering Situations on Autobahn)

Source: Google Maps

bast

Dikablis Head-mounted Gaze Detection System

Source: Ergoneers GmbH

Videos

Research Questions

- Does gaze behaviour change when using a CMS in comparison to using an outside rear-view mirror?
- Dependent Varables:
- Number of single glances
- Mean duration of glances
- Maximum duration of a single glance
- Areas of Interest (AOI) analyzed:
- ORM, CMS1, CMS2, CMS3 (left and right depending on direction of maneuver)
- ORM for all CMS conditions
- Inside rear view mirror for all CMS conditions

Reduction of Sample

- Gaze data of 11 subjects had to be discarded due to bad data quality or technical difficulties
- Seven subjects performed the CMS-conditions without the ORM being occluded.

Filtering: Mean Glance Duration ORM

Lane Change (left): Mean Glance Duration ORM

$>$ Since there was a significant difference in mean duration of glances towards the ORM between these seven and the rest of the participants ($p<.001$), they were discarded from the final analysis.

Final Sample for Gaze Analysis ($\mathbf{N}=\mathbf{2 4}$)

- Age:
- $\quad M=51.6 ; S D=16.6$
- Age group:
- younger (<=51): 13
- older (>=64): 11
- Gender:
- 12 male
- 12 female

Filtering into Traffic: Glances to Rear Vision Device

- Number of glances on CMS3 significantly higher than on ORM
- Mean as well as maximum glance duration is significantly reduced for CMS1

Maximum Glance Duration (Filtering)

Duration of Overtaking Maneuver

- An overtaking maneuver on average took about 16 seconds from leaving the own lane until it was completed.
- Neither the system used nor the age group excerted a significant influence on the duration of the overtakting maneuver.

Source: http://m2m-magazin.de/wp-content/uploads/2013/11/BMW-ConnectedDrive4_600.jpg

Lane Change (left): Glances to Rear-Vision Device

- There are no significant differences between any of the CMS conditions and the ORM condition.

Maximum Glance Duration (Lane Change - left)

Schmidt - IG CMS

Lane Change (right): Glances to Rear-Vision Device

Number of Glances

Glance Duration

- Number of glances on CMS3 significantly higher than on ORM
- Mean as well as maximum glance duration is significantly increased for CMS1 (tendency for CMS2 and CMS3)

Maximum Glance Duration (Lane Change - right)

Use of Inside Rear-view Mirror

- 13 participants used the inside rear-view mirror in all conditions during filtering
- There was no significant effect of vision device on use of inside rear-view mirror

Number of Glances

Glance Duration

Performance Measures (assessed by investigator)

Critical Situations (assessed by investigator)

| | ORM | CMS1 | CMS2 | CMS3 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Filtering | 4 | 9 | 7 | 6 | 26 |
| Overtaking | 5 | 3 | 5 | 3 | 16 |
| \# subjects | 40 | 39 | 40 | 40 | |

- For both driving situations a McNemar-Test did not reveal any significant differences between CMS-conditions and ORM.

Summary of Results

- During real highway driving situations (filtering into traffic, lane change) the CMS is used in a comparable way as an outside rear-view mirror.
- There seems to be a slight reduction in glance duration for the left CMS1, possibly due to the low position (distraction)
- A slightly larger number of glances to CMS3 (left and right) might be due to its position in the regular field of view
- Driving performance during filtering and overtaking as judged by the investigator was worst for CMS1. For elderly all three CMS positions score significantly lower than the ORM.

Influence of Farsightedness (Hyperopia / Presbyiopia)

- Outside Rearview Mirror: Focus on real distance of object (far vision)
- CMS: Focus on distance of monitor (near vision)
- Accomodation from far to near distance takes time and might lead to fatigue.
- Positive aspects like reduction of gare, reduced blind spot, and information closer to central field of view might have to be taken into account.
- Study: Is there a difference in visual acuity for farsighted (normal sighted / corrected to normal sighted) drivers between devices used for rear vision?

Snellen Test Chart

Considering the

 magnification factor of the ORM the distance chart ORM -occular reference point (ORP) corresponded to the standardized distance for the test chart.
$d \approx 3,60 \mathrm{~m}$

Participants

- 50 Participants tested
- 3 participants were excluded from analysis because they did not meet the criterion of .7 visual acuity
- 1 participant was excluded because - despite not being diagnosed as farsighted - he did not identify the visual stimuli in any condition.

		reported by participant		
farsighted				
farsighted				
uncorrected				

corrected\end{array}\right)\)

Outside Rear-view Mirror vs. Camera-Monitor-System

- The use of a CMS leads to a shift in visual acuity for farsighted drivers (although the oldest participants was only 64 years old)
- This is not the case for drivers who do not have any visual deficiencies.
- The issue should be investigated closer and be considered in future discussion.
- More extensive studies are needed, taking into account:
- different monitor positions / distances
- include „real" elderly drivers (>65 years)
- different degrees of farsightedness with different corrections (in order to derive thresholds, investigate appropriate measures)
- real driving situation should be considered
- gaze analysis in oder to take into account accomodation times

Next steps

- Finalisation of analysis
- Study on the use of CMS in heavy goods vehicles (technical and HMI)
- Support of discussion in IG CMS
- Final report expected in late summer 2014 (will be translated into English language)

