Behavior of particulate matters measured in vehicle cabin during real driving conditions

2022. 11. 09

Contents

- 1. Measurement method and set up
- 2. Test results
- 3. Conclusion

>> Test conditions (1)

> Test vehicle age/mileage

Medium size vehicle

- K5 (KIA motors)
- Fuel: gasoline
- Manufacturing year : 2022
- · Vehicle mileage: 1,046 km

SUV

- Sorento (KIA Motors)
- Fuel : diesel
- Manufacturing year: 2022
- Vehicle mileage: 13,755 km

Cabin air filter age

- Buy new filters for both vehicles
- Replace with a new genuine product filter purchased
- Filter Information: Hyundai Mobis Aircon Filter

>> Test conditions (2)

Meteorological conditions & Background air pollution level

22. Sep.

K5 (gasoline)

Urban + motorway route

Temp. : 21.6 ℃ Humi. : 55 %

PM-10 : 22 μ g/m³ PM-2.5 : 2 μ g/m³

23. Sep.

K5 (gasoline) Urban route

Temp. : 20.8 ℃ Humi. : 46 %

PM-10 : 24 μ g/m³ PM-2.5 : 9 μ g/m³

28. Sep.

Sorento (diesel) Urban + motorway route

Temp. : 22.0 ℃ Humi. : 63 %

PM-10 : 33 μ g/m³ PM-2.5 : 9 μ g/m³

29. Sep.

Sorento (diesel) Urban route

Temp. : 26.3 °C Humi. : 47 %

PM-10 : 57 μg/m³ PM-2.5 : 32 μg/m³

- Meteorological data : Korea Meteorological Administration
- Air pollution data: Airkorea (Urban Atmosphere Measurement Network), Korea Environmental Corporation
- · Weather information of test location and time

>> Measured component and measurement method

Particulate and gas components to be measured

Particulate components

PM 2.5

PM 10

PM 0.3 ~ 10 (#)

Nano Particles (#)

BC (Black Carbon)

Gaseous components

NOx

CO

CO₂

>> Measured component and measurement method

➤ Measurement method and test equipment requirements

GRIMM 11-A

PM-0.25 ~ PM-32

90° light scattering and filter-sampling (Dual-Technology)

TSI OPS 3330

PM-0.3 ~ PM-10

120° light scattering and filter-sampling (Dual-Technology)

TSI WCPC 3789

2.2 ~ 7 nm particles

Water-Based Condensation Particle Counter

TSI SMPS 3910

10 ~ 420 nm particles

size distribution to amplified particle using alcohol

MAGEE AE43

Black Carbon (BC)

Aethalometer

Continuous collection of aerosol on filter with simultaneous measurement of attenuation of transmitted light at wavelengths of 880 nm

TESTO 350k

NOx

Electro Chemical Sensor

0 ~ 4000 ppm NO

0 ~ 500 ppm NO2

envea MVS 2M heated

CO, CO,

Gas filter correlation (GFC)

0 - 75 ~ 10 ppm CO

0 - 10 ~ 250,000 ppm CO2

>> Sampling points

> Interior sample point

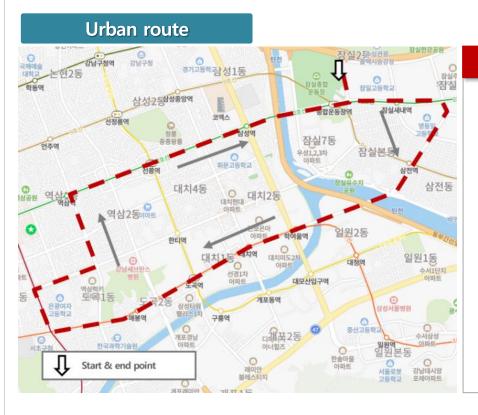
Arrangement of measuring instruments

- The measuring instrument is placed in the rear seat of the vehicle
- · Install perforated plate for horizontal measurement of measuring instrument in the rear seat
- Install the measuring instrument on the perforated plate and fix it with a Velcro tie

>> Sampling points

> Interior sample point

Installing sampling points


- Install the sampling point tube on each measuring instrument
- Install the sampling tube at the height of the respiratory system in the center of the front seat
- The sampling tube is fixed through a Velcro tie

>> Test modes

Real driving conditions (Urban route)

Route information

Driving route

Jamsil Sports Complex Parking Lot

- → Jamsil 3-way Intersection
- → Tancheon 1-gyo
- → Yangjae Station
- → Dogok 1-dong Community Center Intersection
- → Yeoksam Station
- → Jamsil Sports Complex Parking Lot

Driving distance

16 km (60 minutes)

Average / Maximum vehicle speeds


K5: 16.0 kph / 65.3 kph SUV: 18.1 kph / 58.3 kph

>> Test modes

Real driving conditions (Urban & Urban motorway route)

Route information

Driving route

Ansan Banwol Park

- → Maesong TG
- → Seosan TG
- → Ansan terminal Intersection
- → Gamgol Stadium
- → Ansan Design Culture High School
- → Ansan Banwol Park

Driving distance

Urban 3.5 km \rightarrow Motorway 17 km \rightarrow Urban 16.2 km (60 minutes)

Average / Maximun vehicle speeds

K5: 41.3 kph / 104.9 kph SUV: 39.4 kph / 104.7 kph

>> HVAC modes

> HVAC system settings

In-vehicle recirculation (RC)/ Outside air ventilation (OA) driving methods

Manual mode (A/C OFF)

Step 1 Saturation (10 min)

- 1. All windows fully open to saturate with outside atmospheric condition (10 min.)
- 2. Set up and start the equipment

Step 2 Driving (60 min)

- 1. Window closed
- 2. In-vehicle recirculation mode (RC)
- 3. Driving the test route

Step 3
Saturation
(10 min)

- 1. Stop the vehicle
- 2. All windows fully open to saturate with outside atmospheric condition (10 min.)

Step 4 Driving (60 min)

- 1. Window closed
- 2. Outside air ventilation mode (OA)
- 3. Driving the test route

Automatic and air-cleaning mode driving methods

Automatic mode (A/C ON)

Step 1 Saturation (10 min)

- 1. Stop the vehicle
- 2. All windows fully open to saturate with outside atmospheric condition (10 min)

Step 2 Driving (60 min)

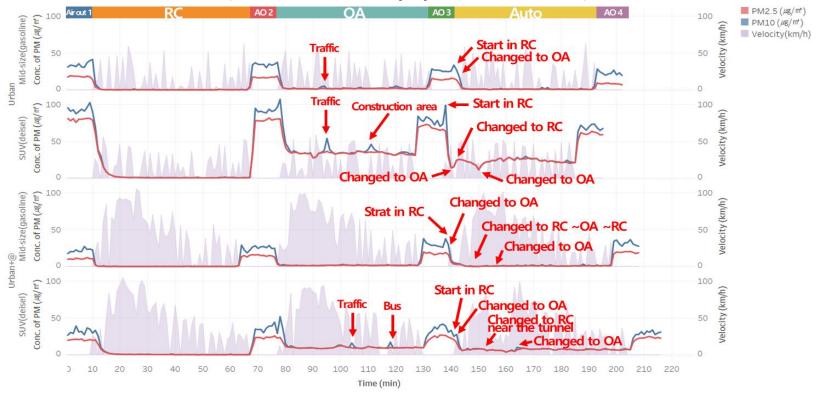
- 1. Window closed
- 2. Automatic (AUTO) mode and vehicle Air-Cleaning mode ON
- 3. Driving the test route

Step 3
Saturation
(10 min)

- 1. Stop the vehicle
- 2. All windows fully open to saturate with outside atmospheric condition (10 min)
- 3. Finish measurement of the equipment

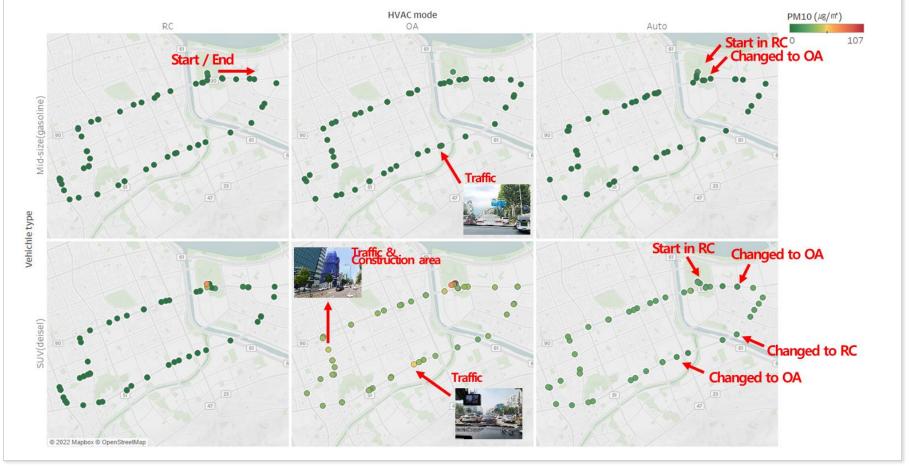
>> HVAC modes

- > Automatic mode setting
- The Air-Cleaning mode automatically shuts off outside air and operates the air conditioner if the fine dust level in the vehicle is poor(36 μ g/m³ or higher)
- AUTO and Air-Cleaning modes were tested to verify the performance of the Air-Cleaning mode


- During driving test, HVAC system changed from OA to RC before tunnel entry
- On the screen of the vehicle, the phrase 'Cut off the outside air for the indoor environment' appears

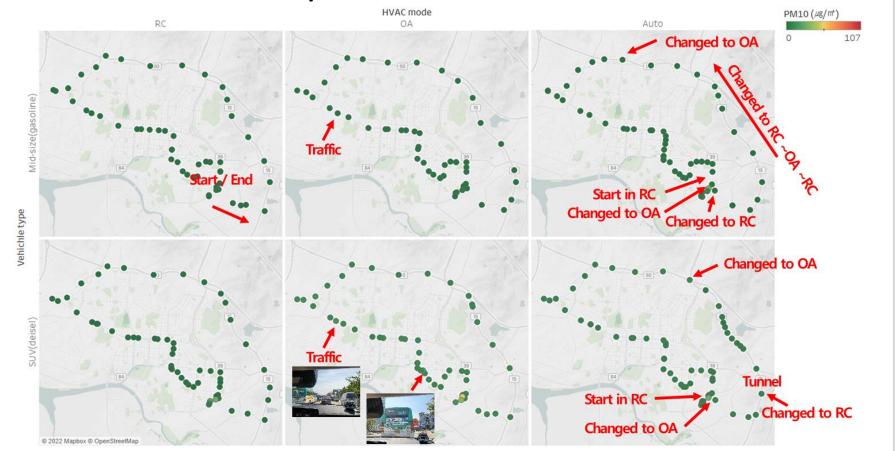
>> Particulate components

Particulate matters (PM10, PM2.5, Equipment : GRIMM)


- ☑ When outside air ventilation(OA), PM10 conc. increasing in congestion sections, near construction sites
- When AUTO mode, air conditioning mode changed to OA or RC depending on air quality in the vehicle In particular, it changed from OA to RC before entering the tunnel

>> Particulate components

> PM10 Urban route



>> Particulate components

> PM10 Urban + Motorway route

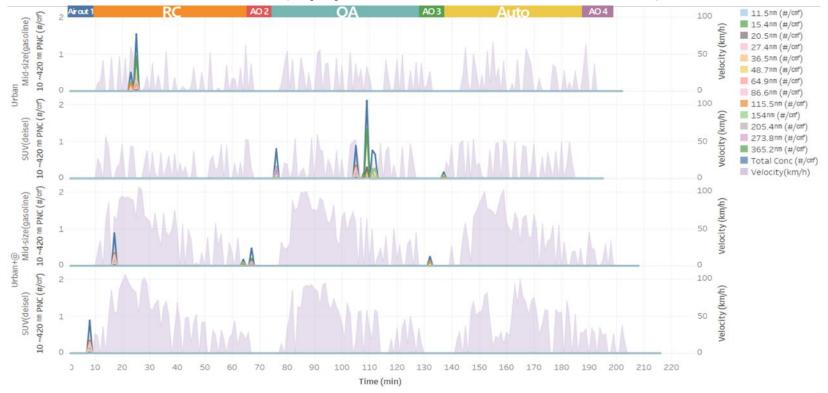
>> Particulate components

Particle number concentration (Equipment : OPS)


- ☑ In AUTO mode, PNC depends on HVAC mode change (RC or OA)
- ☑ RC mode < AUTO mode < OA mode in order of concentration intensity
 </p>

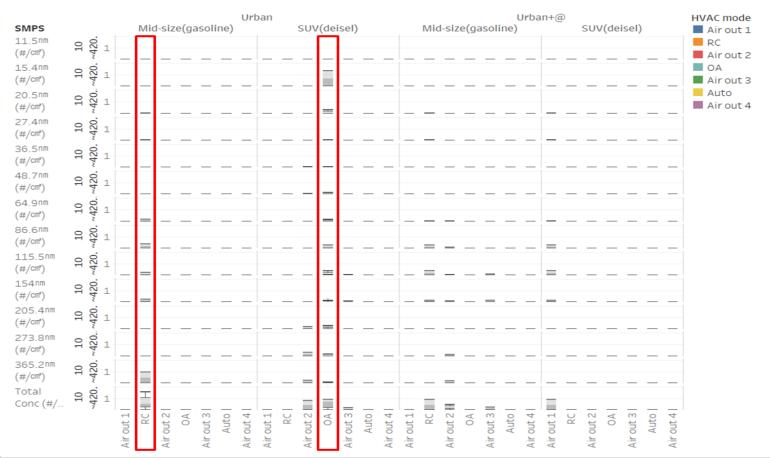
>> Particulate components

➤ Particle number concentration (Equipment : WCPC / 2.2 ~ 7 nm PNC)


- PNC changes frequently in OA mode and low in RC mode
- ☑ In the A/C OFF state, the WCPC equipment generates a measurement error message due to increasing temperature

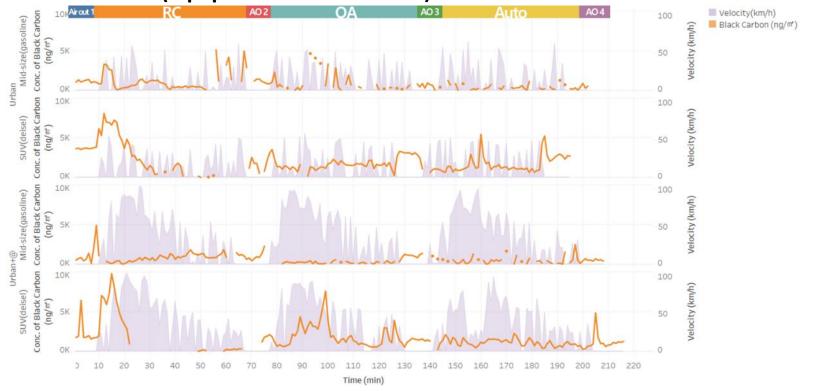
>> Particulate components

➤ Particle size distribution (Equipment : SMPS / 10 ~ 420 nm PNC)


SMPS cannot be measured accurately due to tilt error while dynamic driving

>> Particulate components

➤ Particle size distribution (Equipment : SMPS / 10 ~ 420 nm PNC)



>> Particulate components

Black carbon (Equipment : MAGEE AE43)

- ☑ BC not showing dependence on HAVC mode
- ☑ BC conc. increased when diesel vehicles nearby while driving

>> Gaseous components

> CO₂ concentration

- ☑ When RC mode, CO₂ accumulated in vehicle over time
- $oldsymbol{arphi}$ When driving in AUTO mode, CO $_2$ distribution changed as HVAC mode changed to OA or RC state

>> Gaseous components

> CO₂ Urban route

- ☑ In RC mode, CO₂ conc. exceeded 2,000 ppm(Criteria for Public Transportation Vehicles in Korea) within 20 minute.
- $\ensuremath{\checkmark}$ In OA mode and AUTO mode, the CO₂ conc. around 1,000 ppm.

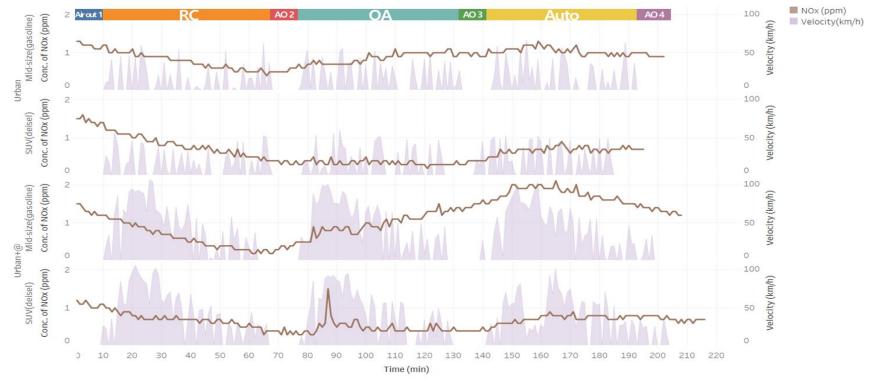
>> Gaseous components

> CO₂ Urban + Motorway route

☑ In the AUTO mode, the RC mode was operated before the tunnel section, and the CO₂ conc. increased

>> Gaseous components

> CO concentration



- lacktriangle The CO conc. higher in the order of RC mode < AUTO mode < OA mode
- When driving in OA mode, CO conc. increased at the point of heavy traffic

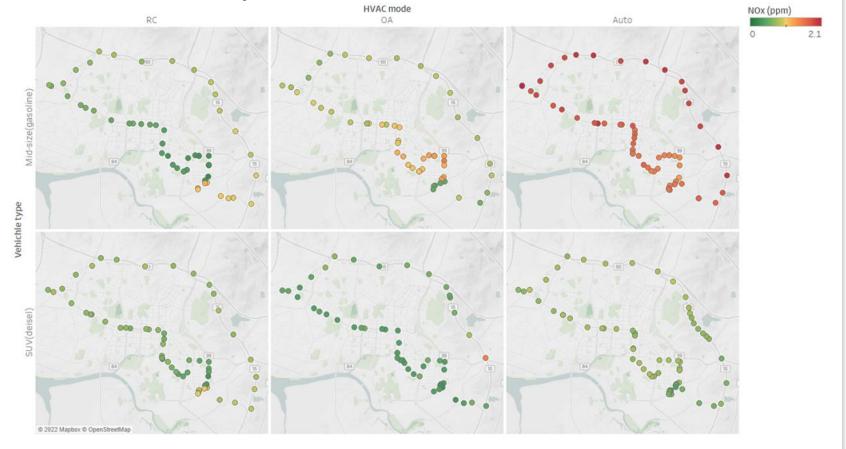
>> Gaseous components

> NOx concentration

- ☑ Not depending on HVAC mode, the state of traffic while driving, and the type of vehicle.
- ☑ Generally showing relatively high conc. in AUTO mode and urban+motorway route than urban route.

>> Gaseous components

> NOx Urban route



>> Gaseous components

> NOx Urban + Motorway route

3. Conclusion

>> Particulate components

- ☑ Particulate components were considerably influenced by HVAC system settings.
- ☑ AUTO mode showed the effect of improving vehicle cabin air quality of particulate components.
- ✓ PM conc. in vehicle cabin influenced by the degree of PM introduced from the outside sources. Thus in-cabin and outside air should be measured simultaneously.
- ☑ Nano size particle components showed a similar characteristics with PM except Black carbon.
- ☑ WCPC showed sensitivity with operating temperature, SMPS with vibration and BC with humidity and vibration while driving.
- ☑ Therefore, maintaining the stabilized conditions for operating equipment for nano particles would be critical during dynamic driving test.

3. Conclusion

>> Gaseous Components

- $\ensuremath{\square}$ CO₂ was affected by the HVAC mode settings especially RC mode.
- ☑ CO conc. considerably depended on vehicle speed as it increased when the vehicle speed decreased while traffic volume was high.
- ☑ The CO intensity in vehicle cabin could be determined by outside air quality generated by surrounding traffic conditions while driving.
- ☑ NOx did not show the effect of HVAC mode settings, traffic conditions while driving, and the types of vehicles. Thus, more precise and accurate NOx equipment needed.

Thank you!!

INJI PARK <coolinji@kotsa.or.kr>

