VIAQ-25-05

November 9th 2022

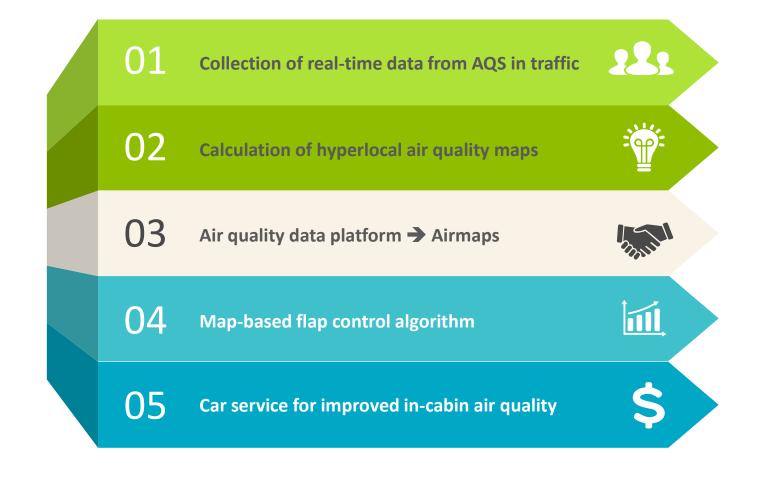
Improved in-cabin air quality with map-based air recirculation control

Herve Borrel and Paolo Taddonio, Airlib Inc.

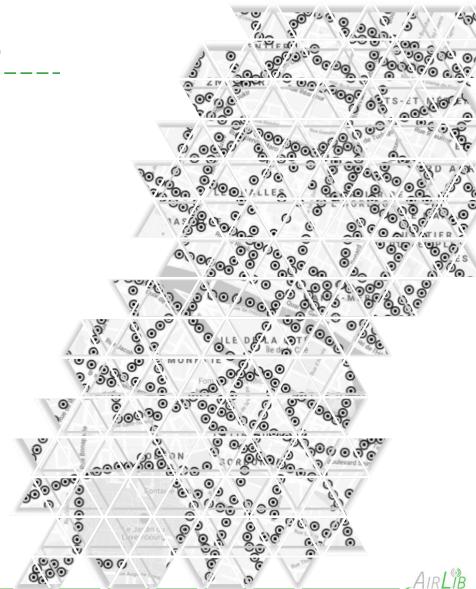
Professor Heejung Jung, UC Riverside

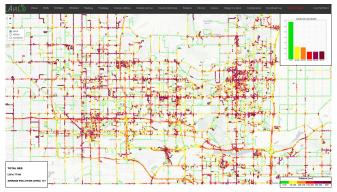
KEY FACTS

- In-cabin pollution often reaches toxic levels
- Traffic pollution causes millions of deaths each year worldwide
- Automotive Air Quality Sensor have been used for >30 years
- Automatic recirculation flap management in high-end cars



2


What We do


Airlib air quality maps

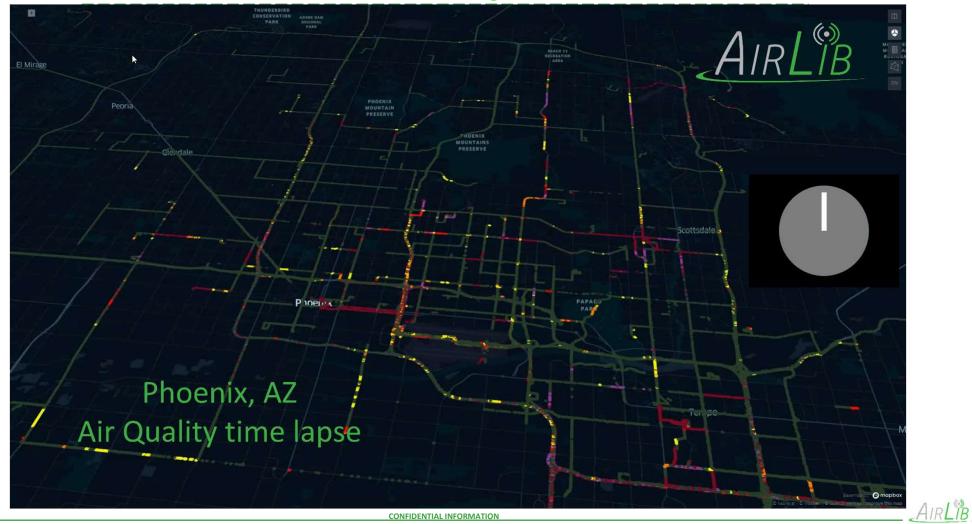
Why are they unique?

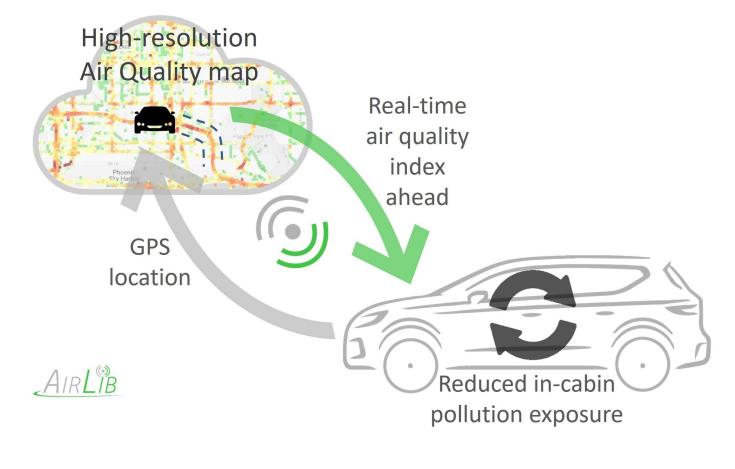
- From real data rather than model based
- Unprecedented resolution in time and space
- Scalable worldwide at realistic cost
- Actionable for auto and non-auto applications

Pilots done in several cities

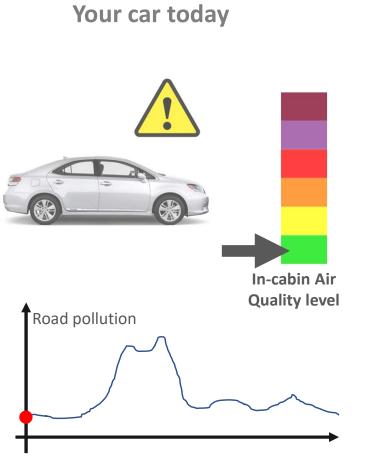
Phoenix, Arizona > 15000 trips > 100 000 locations mapped

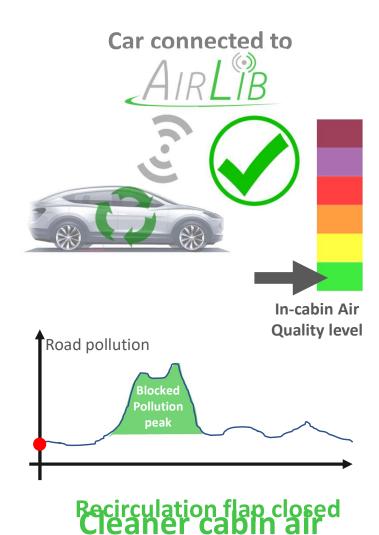
Paris, France
> 5000 trips > 30 000 locations mapped


>5000 trips >60 000 locations mapped


Bordeaux, France > 20000 trips > 40 000 locations mapped

CONFIDENTIAL INFORMATION

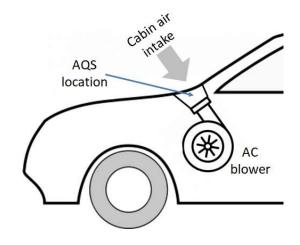

Time lapse


Map based pollution exposure reduction

AIRLIB

High pollution inside the cabin

PURPOSE OF THE STUDY


Evaluate in-cabin pollution reduction with map-based flap control

Why? -> Could be implemented on ALL cars


STEP 1: DATA COLLECTION

Collection of data from Automotive Air Quality Sensors on-board city cars

- Metal oxide dual sensor
- CO-VOC & NO₂ values every 200ms
- GPS / GSM
- 2 major cities: one in the USA, one in Europe
- Each ~ 50 cars / > 18 months / > 15k trips

TRIP EXAMPLES

Sensor signals

Trip path

STEP 2: AIR QUALITY MAPS

Calculation of high-resolution air quality maps from trip data

- Approx 50 meter pitch
- 40k-100k gridpoints
- Based on detected "pollution events"
- City center coverage > 100 times
- One Air Quality index per gridpoint

STEP 3: FLAP CONTROL

Recirculation flap control algorithm based on map indices

- Closes if pollution ahead of car is high
- Reopens if pollution ahead is lower
- 60s minimum time between flap movements
- 450 seconds maximum close time

→ Applied to stored trips as if the car received the flap recommendations real-time

STEP 4: CALCULATION OF IN-CABIN POLLUTION

Simplifying assumptions:

- AC blower speed is constant
- The car is airtight
- The flap is either 100% closed or 100% open
- The initial in-cabin pollution is zero
- In-cabin air "dilution" varies with the ACH

STEP 4: CALCULATION OF IN-CABIN POLLUTION

"Dilution" of the in-cabin air with external air when the flap is open

Flap open \rightarrow dilution by external air

Flap closed \rightarrow no dilution

Total Passenger Exposure over trip = Σ in-cabin pollution indices

STEP 5: COMPARISONS

The Total Passenger Exposures* were calculated for sets of 50 trips for each city

- Case 1: flap always open
- Case 2: map-based flap control
- Case 3: periodic flap closures with same overall "closed-time" as case 2
- Case 4: flap control based on on-board Air Quality Sensor

Each case with 3 different Air Changes per Hour \rightarrow 12/h, 30/h, 40/h

* VOCs only. Similar results obtained with NO2 in Europe

RESULTS

Map-based exposure reduction versus open flap case

Averages over 50 trips	Passenger exposure reduction MAP-BASED FLAP CONTROL*	
	European city	US city
ACH = 12/h	59%	63%
ACH = 30/h	46%	42%
ACH = 40/h	42%	36%

- 36% to 63% exposure reduction vs open flap
- Reduction goes down when blower speed goes up (higher ACH)
- Similar results for the US and European city

VIAQ-25 Nov 2022

* Use of predictive path algorithm to identify likely locations ahead

RESULTS

Comparison to periodic flap closures

Averages over 50 trips of each city	Passenger exposure reduction MAP-BASED FLAP CONTROL	Passenger exposure reduction PERIODIC FLAP CLOSURES
	Average of European and US cities	Average of European and US cities
ACH = 12/h	61%	40%
ACH = 30/h	44%	17%
ACH = 40/h	39%	11%

The map-based control has a clear advantage

→ For a given total "closed-flap" time, the timing of the flap closures is critical

RESULTS

Comparison MAP versus SENSOR

Averages over 50 trips of each city	Passenger exposure reduction MAP-BASED FLAP CONTROL	Passenger exposure reduction SENSOR-BASED FLAP CONTROL
	Average of European and US cities	Average of European and US cities
ACH = 12/h	61%	39%
ACH = 30/h	44%	31%
ACH = 40/h	39%	29%

The map-based control has better performance than the on-board sensor

CONCLUSIONS

The map-based flap control improves in-cabin air quality significantly

More efficient than an on-board Air Quality Sensor

A pure software solution

Deployable worldwide on all cars, connected or not

Limited investment with important societal health benefits

NEXT STEPS

Collect Air Quality Sensor data from ~ 0.02% of cars

(new data collection pilot coming up with Particulate Matter (PMs) in addition to CO/VOC-NO2)

A single OEM can enable the solution in the USA ... or even on several continents

Market the dataset to extract high revenues

THANK YOU

www.airlib.co

Scottsdale, Arizona Herve Borrel herveborrel@airlib.co

