The necessity of laboratory test in stablized controlled atmosphere for vehicle in-cabin air quality full characterization

VIAQ-25-08 November 09th 2022

Scientific supervision:

• ESTACA : Amine MEHEL, Georges FOKOUA.

Technical monitoring:

- UTAC : Hanaa ER-RBIB
- ARIAMIS : Patrick CHEVRIER

Presented by:

Nadir HAFS

ARIAMIS ENERGETIC SYSTEMS

CREATEUR DE NOUVELLES MOBILITES

SUMMARY

- 1. Measurement platform (The bubble)
- 2. Particle generation systems
- 3. Homogeneity of the generated polluted atmosphere
- 4. Instrumentation
- 5. Protocol for the generation of the polluted atmosphere
- 6. In-Cabin air quality characterization
- 7. Influence of filter mileage on the particle's infiltration.

THE MEASUREMENT BUBBLE

 Generate a polluted environment with fine and ultrafine particles

Fig. (1): The measurement plateform

PARTICLES GENERATION SYSTEMS

HOMOGENEITY OF THE GENERATED POLLUTED ATMOSPHERE

Generation of polluted environment (CFD approach)

- Particles injected 2,5µm, 1µm and 100nm
- Turbulence model used: K-omega (2 equations model) SST
 - Forces acting on particles: Gravitational, lift, drag, Brownian

Fig. (4) : Particles distribution in the bubble colored by their residence time (0,5 second)

According to the simulation, after 0.5 second the particles are distributed in the entire volume

HOMOGENEITY OF THE GENERATED POLLUTED ATMOSPHERE

Particle distribution homogeneity

- 15 different zones measured in the bubble.
- Injection of fine and ultra-fine particles into the closed bubble (with the activation of mixing fan)
- Reach a concentration of 120 000 particles/cm³
- · Measurement of the number concentration of particles injected in each localized area.
- Assessing the differences of the concentration between the 15 zones.
 Particle injection point

Mixing fa	Particle Injectio		
Left zone	Center zone 1	Right zone 1	
1 - (1		Diskt	
Left zone	Center	Right	
2	zone z	zone z	
Central	Central	Central	
Left zone	Center	Right	
	zone	zone	
Left zone	Center	Right	
3	zone 3	zone 3	
Left zone	Center	Right	
4	zone 4	zone 4	

Results:

 The maximum difference is between the center zone 1 and the left zone 4: 124000 and 115000 particles/cm³ respectively. The difference is around 7%.

INTRUMENTATION

Measurements of the mass and number concentrations of fine and ultra-fine particles :

POLLUTED ATMOSPHERE GENERATION PROTOCOL

• The protocol to generate a polluted and controlled environment :

POLLUTED ATMOSPHERE GENERATION PROTOCOL

- Injection of fine and ultra-fine particles into the bubble.
- Generate a polluted atmosphere by controlling the rate of this pollution.
- Average temperature in the measurement bubble : 23°c
- Average humidity : 40%

Alignment with the WHO recommendation would amount to lowering it to 10 μ g/m3. PM10 is subject to two limit values: 20 μ g/m3 as an annual average and 50 μ g/m3 as a daily average, not to be exceeded for more than thirty-five days per year. The WHO recommends 15 μ g/m3 for the first and 45 μ g/m3 for the second. Sept. 23, 2021

IN-CABIN AIR QUALITY CHARACTERIZATION

Mass concentration of particles in the passenger compartment and in the bubble 5 4,5 4 1 0,5 0 \langle \langle I Ē \langle Ē B BB B 8/8 0/8 4/8 0/8 4/8 8/8 Ventilation mode bubble in-cabine

Vehicle feature:

- Thermal engine (Diesel)
- Model year 2021, mileage 2000 Km.
- In- cabin filter Original HE type.

- The concentration of particles infiltrated into the car cabin during the non-recycled (OA) mode is the highest.
- For the global ventilation modes the lowest incabin concentration (127 μg/m³) is higher than the WHO concentration guidlines (45μg/m³)

IN-CABIN AIR QUALITY CHARACTERIZATION

50% 45% 40% 35% 30% nfiltration rate 5% 20% 15% 10% 5% 0% Ē Ē ŝ Ē \langle \langle 8 BBBBB 8/8 0/8 4/8 8/8 0/8 4/8

Report of particle infiltration in the in-cabin

Particles infiltrate at highest rates for nonrecycled ventilation.

Fig. (8) : in-cabin filter

In-cabin filter 0 km In-cabin filter 2480 km In-cabin filter 28881 km

- On average, the cabin filter is changed every year or every 15 000 kilometers.
- Traffic in the city where the air is often more polluted, rather plan to change it every 6 to 8 months or every 10 000 kilometers.
- (Recommended by manufacturers)

in-cabine bubble

UTAC'

ESTACA

Comparison of the infiltration rates between the 3 filters

STATIC VIAQ MEASUREMENTS VS ON-ROAD MEASUREMENTS

- Non recycled ventilation mode with medium flow rate ventilation
- · Same vehicle model
- · Same cabin filter

	On-road		Static (measurments bubble)			
	Indoor concentration (mg/m3)	Outdoor concentration (mg/m3)	Infiltration rate (I/O)	Indoor concentration (mg/m3)	Outdoor concentration (mg/m3)	Infiltration rate (I/O)
PM ₁₀	0,009	0,010	92%	1,447	4,433	33%
PM _{2,5}	0,008	0,008	96%	1,439	4,256	34%
PM ₁	0,008	0,008	96%	1,436	4,039	36%

-On-road measurements make it difficult to control external conditions: weather, inter-vehicle distances, road infrastructure types, **pollution level (table above)**

-Static laboratory measurements inconvenient: influence of vehicle speed, less representative of realistic conditions during driving

Necessity of static laboratory measurements complementary to the on-road measurements

Thank you