Humid Gas Stress Corrosion Cracking Test for Aluminum alloys

N J Henry Holroyd 16th November 2022

Summary

- The experimental findings, underpinning the Material's Compatibility Test "Humid Gas Stress Corrosion Cracking Test for Aluminum alloys", is undeniably high-quality
- Few high-strength metallic alloys (Ferrous or non-ferrous) currently being used, in demanding structural engineering applications, will pass the proposed Humid Gas SCC Test
- The originator and a major contributor to the development of the ISO Sustained load cracking test methodology provides solid arguments why the proposed SCC Test:
 - Fails to provide the key information, cylinder designers, users and regulators seek
 - Is unrealistic and inappropriate
 - Should be replaced by an Alternative Test Method

Background

- >50 years experience indicates Commercial 6xxx series Al-Mg-Si alloys are 'practically immune' to sub-critical cracking processes during their use in structural applications:
 - Stress Corrosion Cracking (SCC), hydrogen embrittlement (HE) and sustained load cracking (SLC)

Japanese proposed Humid Gas Stress Corrosion Cracking Test

- Japanese research published over last decade or so confirms crack propagation rates for 'long' cracks in AA6061-T6 are enhanced by presence of moisture if mechanical driving forces are sufficiently high (Ogawa et al 2016, 2019)
- <u>Please note</u>: All aluminum alloys show crack growth rate enhancement in humid conditions when subjected to sufficient mechanical loading conditions (see next slide)

Schematic showing loading conditions

Can we provide an alternative Test Methodology?

• Yes

- Alternate Test to provide quantitative information:
 - Demonstrating alloys tolerance of 'short' cracks (or other local stress raisers) is adequate to prevent stable SCC propagation under 'worst-case' service conditions, and
 - For use in structural design and service-life prediction
- Dr Holroyd proposes to customize SCC test development for high-pressure Aluminum all-metal and composite pressure containers.
- Secondary testing, providing confidence in the alternative test, to be conducted using the OICA proposed test but reducing the initial mechanical loading conditions from ~85% K_{IC} to levels just above the alternate test threshold.

HH Refereed publications in Journals and Book Chapters on Aluminum alloys include > 50 on SCC and >10 on SLC.

Selecting one/two a decade

- **1979**. "Reduced Ductility of a High Strength Aluminium Alloy During and After Exposure to Water", D. Hardie, N.J.H. Holroyd and R.N. Parkins, <u>Metal Science</u>.
- **1987.** "Effects of Lead on the Sustained-Load Cracking of Al-Mg-Si Alloys at Ambient Temperatures", J.J. Lewandowski, V. Kohler and N.J.H. Holroyd, <u>Materials Science and Engineering</u>.
- **1992.** "Strain Concentration at Grain Boundaries in Al-Mg-Si Alloys", P.M. Singh, J.T. Evans and N.J.H. Holroyd, <u>Materials Science & Engineering.</u>
- **2001**. "Environmental Effects on Aluminium Alloys", N J H Holroyd, Invited chapter in "<u>Environment Effects on Engineered Materials</u>", Elsevier, pp 173-251.
- **2010.** "Technical Basis for Acceptance/Rejection Criteria for Flaws in High Pressure Gas Cylinders", M Rana, J Smith and N J H Holroyd, <u>J. Pressure Vessel Technology</u>.
- **2011.** "Crack Propagation during Sustained-Load Cracking of Al-Zn-Mg-Cu alloys exposed to Moist Air or Distilled Water", N J H Holroyd and G M Scamans, <u>Metall. and Mater. Trans. A</u>.
- 2019. "Evaluation of Environment-induced cracking in commercial aluminum alloys: Crack arrest or growth",
 N. J. H. Holroyd, <u>Plenary Lecture at LightMat</u>, 3rd Conference and Exhibition on Light Metals Science and Technology.
- 2022. "Environment-Induced Cracking of High-Strength Al-Zn-Mg-Cu Aluminum Alloys Past, Present and Future, N J Henry Holroyd, T L Burnett, J J Lewandowski and G M. Scamans, <u>Corrosion</u>, Published on-line, 27th October.

Thank you