European Association of Automotive Suppliers

CRS support legs: Background and facts

UN CRS Ad-hoc Group Paris, 29th June 2022

UN R145 DOESN’T SPECIFY A MINIMUM VEHICLE FLOOR STRENGTH PRECISELY

UN R145 Static Force Application Device (SFAD)
6.2.4.5. (UN R145.00. Cor.1)

The horizontal excursion (after pre-load) of point X of the SFAD during application of the $8 \mathrm{kN} \pm 0.25 \mathrm{kN}$ force shall be limited to 125 mm and permanent deformation including partial rupture or breakage of any ISOFIX low anchorage and the vehicle floor contact surface, or surrounding area shall not constitute failure if the required force is sustained for the specified time.

ENGINEERING CALCULATIONS CAN ESTIMATE FLOOR LOADING IN THE R145 TEST

UN R145 REQUIREMENTS WERE DERIVED FROM CRS DYNAMIC TESTS PRESENTED TO UN IWG

clepa European Association o Automotive Suppliers

DOREL
Europe

Test description

- R44 bench equipped with :
- Lower isofix anchorages loads sensors
- Load given in this document are calculated in the centre of the 6 mm diameter anchorage
- Support Leg load sensor
- Tests performed
- Seat A : Gr0+ with Support leg R44 / P1,5
- Seat B : Gr1 with Support leg R44 / P3
- Seat A : Gr0+ with Support leg Euroncap / Q1,5
- Seat B : Gr1 with Support leg Euroncap / Q3

CLEPA
European Association of
European Association of
Automotive Suppliers
DOPEL
Europe
Results- Synthesis

Pulse	Seat	Anti-rotation	Dummy	Lower Isofix anchorage				SLTT
				X	Y	Z	Res	
R44	C	T	P3	2383	126	640	2418	3870
R44	C	/	P3	3370	233	825	3468	/
R44	A	SL	P1,5	2668	1	1005	2847	3699
R44	B	SL	P3	2549	1	1969	3221	4065
Euroncap	A	SL	Q1,5	2911	1	851	2968	3119
Euroncap	B	SL	Q3	3465	1	1822	3761	4622

Force measured in \mathbf{N}

UN IWG Document CRS-07-03 (2008)

FURTHER TESTS WERE DONE WITH DIFFERENT FLOOR PROPERTIES

Description of the tests

Type of Floor

Different type of 50 mm thick materials were placed on the initial bench floor:

- A rigid spacer
- $A 84 \mathrm{~g} / \mathrm{l}$ foam
- A $35 \mathrm{~g} / \mathrm{l}$ foam
- $A 25 \mathrm{~g} / \mathrm{l}$ foam

OREL
The different foam were given by Renault. They seem to be EPP foams

UN IWG Document CRS-13-05 (2009)

WHAT INFLUENCES THE FORCES GENERATED BY THE SUPPORT LEG?

- Assumption: Rigid system without slack, support leg perpendicular to floor and horizontal test bench
- Then, the force on the vehicle floor can be estimated to be:

$$
F_{\text {vehicle floor }}=\frac{\mathrm{h}}{\mathrm{l}} \times \mathrm{m} \times \mathrm{a}
$$

Where: $\quad h$ is height of center of mass over horizontal plane through ISOFIX pivot point
I is distance between support leg and pivot point
m is CRS mass
a is sled acceleration

- R129 provides upper limits for I, m and a but does not regulate h (the only upper bound is the height of the envelope)
- Variation in the force on the vehicle floor is inevitable in real CRS products

WHAT EFFECT WILL INCREASING THE SUPPORT LEG VOLUME HAVE?

- Assumption 2: A spring with spring constant k accounts for flexibility between seat and base
- $h(t)$, becomes a function of time and the simple static estimation for the force on the floor is no longer valid
- Extending the support leg height to directly support the seat will lead to a stiffer response with higher k.
- Whether this increases or decreases $\mathrm{F}_{\text {vehicle floor }}$ is not certain
- This is because there is a finite $\mathrm{k}_{\text {ideal }}$ that minimizes $F_{\text {vehicle floor }}$ for a given $F_{\text {ext }}$.
- If the extended support leg brings k closer to $\mathrm{k}_{\text {ideal }}$, $F_{\text {vehicle floor }}$ decreases, otherwise it increases

SUMMARY

- R145 specifies a static 8 kN 'pull test' - vehicle floor failure is allowed
- R145 static test generates floor forces of 3.2 to 3.6 kN
- CRS dynamic tests generated floor forces of 4 to 6 kN - regulators were aware of this when setting the R145 requirements
- Not all CRS design factors that influence floor forces are regulated product diversity is inevitable, but hasn't led to real-world problems
- Increasing the support leg height (or allowing support legs on boosters) could increase or decrease the floor loading depending on other CRS design factors

Annex 5 (UN R45.00. Cor.1)
 Notes to SFAD (Figure 3)

3. The support leg foot shall consist of a cylinder, having a width of 80 mm , a diameter of 30 mm and on both side faces rounded edges with a 2.5 mm radius.

Contact Area

$=\mathrm{s} \times 80 \mathrm{~mm} \approx 2263 \mathrm{~mm}^{2}$

6.3.5.3. (UN R129.03. Supp.6)

Support-leg foot dimensions
The dimensions of the support-leg foot shall meet the following requirements:
a) Minimum support-leg contact surface shall be $2,500 \mathrm{~mm}^{2}$, measured as a projected surface 10 mm above the lower edge of the support-leg foot (see Figure 3(d));
b) Minimum outside dimensions shall be 30 mm in the X^{\prime} and Y^{\prime} directions, with maximum dimensions being limited by the support-leg foot assessment volume;
c) Minimum radius of the edges of the support-leg foot shall be 3.2 mm .

