

European Association of Automotive Suppliers

CRS support legs: Background and facts

UN CRS Ad-hoc Group Paris, 29th June 2022

UN R145 DOESN'T SPECIFY A MINIMUM VEHICLE FLOOR STRENGTH PRECISELY

UN R145 Static Force Application Device (SFAD)

6.2.4.5. (UN R145.00. Cor.1)

The **horizontal excursion** (after pre-load) of point X of the SFAD during application of the 8 kN \pm 0.25 kN force shall be limited to 125 mm and **permanent deformation including partial rupture or breakage** of any ISOFIX low anchorage and the **vehicle floor contact surface**, or surrounding area **shall not constitute failure** if the required force is sustained for the specified time.

ENGINEERING CALCULATIONS CAN ESTIMATE FLOOR LOADING IN THE R145 TEST

UN R145 REQUIREMENTS WERE DERIVED FROM CRS DYNAMIC TESTS PRESENTED TO UN IWG

- R44 bench equipped with :
 - Lower isofix anchorages loads sensors
 - Load given in this document are calculated in the centre of the 6 mm diameter anchorage
 - Support Leg load sensor
- Tests performed
 - Seat A : Gr0+ with Support leg R44 / P1,5
 - Seat B : Gr1 with Support leg R44 / P3
 - Seat A : Gr0+ with Support leg Euroncap / Q1,5
 - Seat B : Gr1 with Support leg Euroncap / Q3

UN IWG Document CRS-07-03 (2008)

Lower Isofix anchorage SL/TT Seat Anti-rotation Dummy Pulse X 7 Res **P3** 2383 640 2418 **R44** С TT 126 3870 **P**3 **R44** C 3370 233 825 3468 SL P1.5 2668 1005 2847 **R44** A 3699 В SL **P3** 2549 3221 **R44** 1969 4065 SL Q1,5 2911 851 2968 3119 A Euroncap SL Q3 3465 Euroncap B 1822 3761 4622

Results- Synthesis

Force measured in N

FURTHER TESTS WERE DONE WITH DIFFERENT **FLOOR PROPERTIES**

R44

Seat C CabrioFix Seat A PrioriFix Seat B Polaric

5500 Ì **Description of the tests** 5000 Б 4500 4000 Type of Floor 3500 Different type of 50 mm thick materials were placed on the initial bench floor: 3000 2500 A rigid spacer .

- A 84 g/l foam
- A 35 g/l foam
- A 25 g/l foam

The different foam were given by Renault. They seem to be EPP

foams

25 g/l

EuroNcap

Seat A PrioriFlx Seat B Polaric

UN IWG Document CRS-13-05 (2009)

Copyright © 2021 CLEPA. All rights reserved. www.clepa.eu

WHAT INFLUENCES THE FORCES GENERATED BY THE SUPPORT LEG?

- **Assumption:** Rigid system without slack, support leg perpendicular to floor and horizontal test bench
- Then, the force on the vehicle floor can be estimated to be:

$$F_{vehicle\ floor} = \frac{h}{l} \times m \times a$$

- Where: h is height of center of mass over horizontal plane through ISOFIX pivot point
 I is distance between support leg and pivot point
 m is CRS mass
 a is sled acceleration
- R129 provides upper limits for l, m and a but does not regulate h (the only upper bound is the height of the envelope)
- Variation in the force on the vehicle floor is inevitable in real CRS products

WHAT EFFECT WILL INCREASING THE SUPPORT LEG VOLUME HAVE?

- Assumption 2: A spring with spring constant k accounts for flexibility between seat and base
 - h(t), becomes a function of time and the simple static estimation for the force on the floor is no longer valid
- Extending the support leg height to directly support the seat will lead to a stiffer response with higher k.
- Whether this increases or decreases F_{vehicle floor} is not certain
- This is because there is a finite k_{ideal} that minimizes $F_{vehicle\;floor}$ for a given $F_{ext}.$
 - If the extended support leg brings k closer to k_{ideal},
 F_{vehicle floor} decreases, otherwise it increases

SUMMARY

- R145 specifies a static 8 kN 'pull test' vehicle floor failure is allowed
 - R145 static test generates floor forces of 3.2 to 3.6 kN
 - CRS dynamic tests generated floor forces of 4 to 6 kN regulators were aware of this when setting the R145 requirements
- Not all CRS design factors that influence floor forces are regulated product diversity is inevitable, but hasn't led to real-world problems
- Increasing the support leg height (or allowing support legs on boosters) could increase or decrease the floor loading depending on other CRS design factors

Annex 5 (UN R45.00. Cor.1)

Notes to SFAD (Figure 3)

3. The support leg foot shall consist of a cylinder, having a width of 80 mm, a diameter of 30 mm and on both side faces rounded edges with a 2.5mm

radius.

6.3.5.3. (UN R129.03. Supp.6)

Support-leg foot dimensions

The dimensions of the support-leg foot shall meet the following requirements:

- Minimum support-leg contact surface shall be **2,500 mm²**, measured as a projected surface a) 10 mm above the lower edge of the support-leg foot (see Figure 3(d));
- Minimum outside dimensions shall be 30 mm in b) the X' and Y' directions, with maximum dimensions being limited by the support-leg foot assessment volume;
- Minimum radius of the edges of the support-leg foot shall be 3.2 mm. C)