°Catalytic Stripper

Oxidation Efficiency Measurement with Propane

Vinicius Berger

Catalytic Instruments GmbH & Co. KG

PMP Meeting

Geneva, 09.01.2023

Motivation

State of the art:

- Catalytic Stripper is checked with tetracontane particles as defined by PMP
 - ✓ > 99.0% vaporisation of 30 nm tetracontane particles with an inlet concentration of ≥ 10,000 cm⁻³ ✓ (23 nm GTR)
 - ✓ > 99.9% vaporisation of tetracontane particles with a CMD > 50 nm and a mass above 1 mg/m³ (10 nm / Brakes GTR)
- Aerosol measurement equipment⁺ and know-how necessary to perform this check

+we use our SPG as Tetracontane Generator – at a touch of a button

Wanted:

- Quick,
 - easy and
 - reliable method

to check if **Catalytic Stripper** is operational as designed and meets the above criteria

Approach

Oxidation efficiency measurement with propane

- Use a gaseous hydrocarbon
 - Propane is a low-cost gaseous hydrocarbon
 - Propane-in-air is easily available as calibration gas bottle
 - Propane concentration in bottle is constant
 - Propane is easy to detect with an FID
- Propane (C_3H_8) shows different oxidation behavior than tetracontane ($C_{40}H_{82}$)
 - A shorter chain of C-C bonds is more difficult to break up
 - Oxidation efficiency numbers will be lower than the typical >99.0% PMP threshold
 - not a problem because it is a different & additional method

Tasks

Oxidation efficiency measurement with propane

- Find suitable propane concentration
- Characterise new
 Catalytic Stripper
- Load °Catalytic Stripper with sulphur
- Evaluate sulphur-loaded °Catalytic Stripper

Experimental Setup

Sulphur Poisoning

Catalytic Stripper impairment by sulphur poisoning of the catalytic material?

- Fuels with very high sulphur content (HFO) can reduce the catalytic surface
- Sulphur is stored in the catalyst
- Regeneration is possible

Method:

- Load the **Catalytic Stripper** with sulphur from SO₂ gas (10 ppm SO₂ in air)
- Calculate sulphur mass with known concentration and flow rate of SO2
- Calculate emulated operating time with assumptions regarding fuel, engine operating point, dilution

Current results:

- Oxidation efficiency decreased from 95% to 90% after loading 2 g/L [V_{catalyst}] of sulphur
 - \Rightarrow °Catalytic Stripper is very robust regarding sulphur poisoning
 - \Rightarrow Propane oxidation efficiency method proves effective
- no ash buildup or clogging observed (would be noticed during annual PCRF evaluation)

Summary

- ✓ Propane oxidation efficiency measurement is
 - ✓ Quick
 - ✓ Easy
 - ✓ Robust
 - ✓ Good repeatability

- \rightarrow 15 min measurement
- → Gas bottle, MFC, valve, sensor
- \rightarrow e. g. no instabilities in source
- \rightarrow ± 5 %
- \checkmark SO₂-loading to emulate fuel with high sulphur content
 - Propane method can detect sulphur-poisoned catalyst
- ✓ °Catalytic Stripper proves very robust

Outlook

Comparison of propane oxidation efficiency results with tetracontane of a sulphur-loaded **Catalytic Stripper**

Use FID as detector

- Better stability
- Higher sensitivity at low concentrations

More detailed investigation of sulphur poisoning of °Catalytic Stripper

Publication planned this year

Investigation whether PN emissions occur from a sulphur-poisoned **Catalytic Stripper** running at elevated temperatures (= partially regenerating)

Appendix

Results Propane Measurement

e. g. Catalytic Stripper 008CX16

0.75 LPM flow rate

$$\eta = 1 - \frac{c_{CS}}{c_{Bypass}}$$

Error calculation:

Mean + SD \rightarrow Error Propagation $\rightarrow \pm \sigma$