

Progress Status on HD UBE Measurement

prepared by JAPAN

61st EVE IWG 25th & 26th April, 2023

Background

UBE test for Heavy-duty vehicles

【EVE-59】 10/Jan./2023

As a first step,

JRC execute the Charge / Discharge Test.

JPN also starts the physical tests to develop the test procedure for UBE determination < April/2023 ~>

Informal document **GRPE-87-52** 87tf GRPE, 10 January~13 January 2023 Agenda item 9

Heavy-duty Durability GTR EVE-57-10-Rev1a Summary of alternatives Different possibilities for certification and inpresented by OICA service testing of HDV and LCV Each alternative has pluses Any other... and minuses Simple/low effort Due to complexity Goals Chassis dyno already Limited power level and lack of established for light duty (ir industry Total vehicle coverage dissembling sing continues to o Identical procedure for Reference Test packs or whole develop a systems and universally valid and In-service Test reassamble with test procedure. Leverage experience and existing control, OICA cam Our target is to to the conclusion t capabilities of manufacturers and Simple/low effort during next IWG not consider it as a Limited power level regulatory authorities 1) No potion for heavy duty due

Approach

[Focus]

- ✓ JPN evaluates the gap (error) of its battery discharged energies (UBE) obtained under the two (2) different test procedures
 - 1 Chassis Dynamometer Test
 - 2 Charge / Discharge Test

① Chassis Dynamometer Test

2 Charge / Discharge Test

By using <u>V2X function</u>

Test Vehicle

Power : <u>One-way</u> (Vehicle → Power supply)

【Test Vehicle】

- EV Truck (GVW: 7,500kg)
- Battery Capacity: 48kWh (Lithium-ion battery)

Test condition

Test Room Temperature: 25°C (setup)

Setup Power [kW]

Battery Capacity(48kWh)

C-rate =

Test Procedure

- ① Chassis Dynamometer Test (WHVC+Road Gradient) ←GTR No.4_ Section 9 (Annex9, 10)
 - (a) Obtain the discharge pattern data of battery power from SOC max to SOC min (Cycle Repetition).
 - (b) Measure the total amount of battery discharged energy
- 2 Charge / Discharge Test
 - → Measure total amount of battery discharged energy of the following conditions
 - (1) Cycle Repetition: The discharge pattern simulating the chassis dynamometer test 1
 - (2) Constant Power: Power (10.3kW) ••• C-rate=0.2
 - (3) Constant Power: Cycle Average power (24.3kW) - C-rate=0.5
 - (4) Constant Power: Power (48.0kW) ••• C-rate=1.0
 - (5) Constant Power: Cycle Maximum power (114kW) \rightarrow V2X power limit (Max.=69kW) ••• C-rate=1.4

Result

Initial Observations and Next Actions

< Initial Observations >

- > Charge/Discharge test (e.g. bidirectional charger) can be one of the solutions to determine HDVs UBE considering its complexity during in-service testing
- Discharge patterns need further study
 - ✓ Cycle Repetition: consider the necessity to simulate the regenerative energy
 - ✓ Constant Power: consider the necessity to set the upper limit of C-rate

< Next Actions >

- Evaluate the repeatability of each discharge pattern
- Evaluate the potential factors of test-to-test variability
- Develop the concrete test procedure
 - → plan to report the latest progress during 62nd IWG meeting