EU-Commission JRC Contribution to EVE IWG: In-vehicle battery durability e-HDVs capacity fade draft test procedure updates

61th meeting of the GRPE Informal Working Group Electric Vehicles and the Environment (EVE)

Elena Paffumi, Gian-Luca Patrone Ann Arbor, Mi, USA, 25-26 April 2023

Presentation Summary

Draft test procedure for battery capacity fade in e-HDVs

Draft test procedure for capacity fade in e-HDVs Vehicle transfer from the soak area. This shall be done without any unjustified [Charging and discharging delay and in any case within [20] minutes. C-rate equal or less then C/5] During that time the vehicle shall not receive Highest normal charging power available [≤150kW] unjustified exposure to other temperatures but if that is unavoidable this time should in any case Ex: 800kWh \rightarrow C/5 160kW be limited to a maximum of [10] minutes. $1200kWh \rightarrow C/5 240kW; C/10 120kW$ The REESS Battery discharge shall not be [according to charged manufacturer's during the **REESS** fully recommendation Test Temperature $[xxC\pm xC]$ soak period or given speed or C-rate] charged 100% [12h] SOC max [To be defined End of charge initial SoQ of Temperature to be defined REESS] [according to operating [Initial SoC limits End of charge setting @ xxC End of discharge to initial SoC to be defined be defined [derating] [according to [Cut-off voltage as operating specified by limits] SOC min [1h] [1h] manufacture] [1h] Pre-conditioning Test Test Soak at Battery full charge const. power? C-rate, Battery full discharge const. power? Cleast [9h] Charging at full the battery const. power? rate, AC, DC,... AC, DC,... C-rate, AC, DC,... [Equal or less than C/5] [Equal or less than C/5] [Equal or less than C/5] End of discharge [Highest normal charging power \le 150kW] [Highest normal charging power \le 150kW] [Highest normal charging power ≤150kW] to be defined [derating]

61th EVE IWG meeting

Ann Arbor, MI, USA, 25th - 26th April, 2023

European

Commission

3

[Cut-off voltage]

Test

[xxC]

Set the

of the

battery

Draft test procedure for capacity fade in e-HDVs

UN GTR 15 Annex 8 Appendix 4 for <u>LDVs</u>

2.2.3 Application of a normal charge Normal charging is the transfer of electricity to an electrified vehicle with a power of less than or equal to 22 kW.

[Charging and discharging C-rate equal or less then C/5] Highest normal charging power available [≤150kW]

Ex: 800kWh → C/5 160kW 1200kWh → C/5 240kW; C/10 120kW $https://www.transportenvironment.org/wp-content/uploads/2021/07/2020_06_TE_comparison_hydrogen_battery_electric_trucks_met hodology.pdf$

Max. range without refuelling / recharging Long-haul 800km
Regional delivery 400km

Normal charge for HDVs:

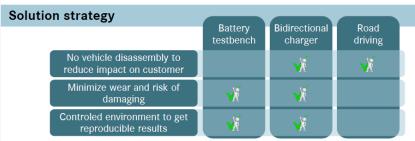
Specifications of an overnight charger for long-haul (150 kW) Specifications of an overnight charger for regional delivery (75 kW)

- \rightarrow $\leq 150 \text{kW}$
- \rightarrow Or ≤ 200-250kW?

Ultra-fast charge:

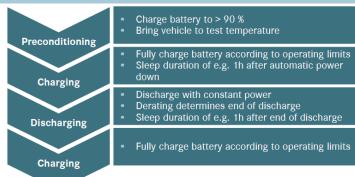
mega charger for long-haul (1.2 MW)

Ultra-fast charger for regional delivery (600 kW)


OICA EVE-57-10e

Methods for battery in field aging determination

Constraints


- Measurement shall produce accurate, reproducible results
- Impact of in service test on customer shall be kept as low as possible
- Special equipment could be used for testing, since only a limited number of tests have to be performed in field

Suggestions:

A test pulse (full charge/discharge cycle) should be applied via charging port. This can be done with a bidirectional charging unit.

Proposed test cycle

Suggestions:

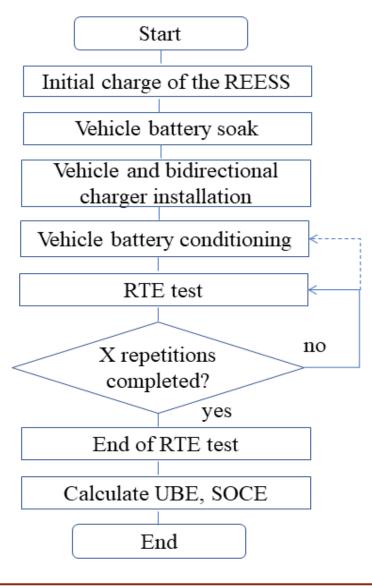
- Test temperature should be between 15 and 25 °C in order to reduce testing effort
- Charging should be done without any special measures to achieve good comparability with field operation
- Few vehicle tests inside of boundary conditions should represent fleet

Measured values

The following values could be derived from testing data:

- Total usable energy at constant power
- Full cycle efficiency
- Accuracy of remaining energy prediction
- Battery reference capacity (assumption: single cell voltages and OCV curves are available)
- Accuracy of SoH determined by BMS

The more accurate BMS SoH is, the lower the number of vehicle tests needed to judge field behavior may be.


Boundary conditions that qualify vehicle for testing:

- Cell temperature normally distributed with average temperature at Y°C and variance <Z
- Average SoC normally distributed with average value Y*% and variance <Z*
- Depth of discharge (DoD): share of cycles with DoD >Y**% must be below Z**%

 Y,Y^*,Y^{**} ; Z,Z^*,Z^{**} = values of variables tbd.

Draft test procedure for capacity fade in e-HDVs

Thank you

Contacts Info: EC DG JRC DIR-C EMC Sustainable, Smart and Safe Mobility Unit elena.paffumi@ec.europa.eu, gian-luca.patrone@ec.europa.eu

© European Union 2023

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

